

RAJAGIRI SCHOOL OF ENGINEERING & TECHNOLOGY

Department of Applied Electronics & Instrumentation

RSET VISION

To evolve into a premier technological and research institution, moulding eminent professionals with creative minds, innovative ideas and sound practical skill, and to shape a future where technology works for the enrichment of mankind.

RSET MISSION

To impart state-of-the-art knowledge to individuals in various technological disciplines and to inculcate in them a high degree of social consciousness and human values, thereby enabling them to face the challenges of life with courage and conviction.

DEPARTMENT VISION

To evolve into a centre of academic excellence, developing professionals in the field of electronics and instrumentation to excel in academia and industry.

DEPARTMENTMISSION

C Facilitate comprehensive knowledge transfer with latest theoretical and practical concepts, developing good relationship with industrial, academic and research institutions thereby moulding competent professionals with social commitment.

()

PROGRAMME EDUCATIONAL OBJECTIVES

PEOI: Graduates will possess engineering skills, sound knowledge and professional attitude, in electronics and instrumentation to become competent engineers.

PEOII: Graduates will have confidence to design and develop instrument systems and to take up engineering challenges.

PEOIII: Graduates will possess commendable leadership qualities, will maintain the attitude to learn new things and will be capable to adapt themselves to industrial scenario.

PROGRAMME OUTCOMES

Engineering Graduates will be able to:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the publichealth and safety, and the cultural, societal, and environmental considerations.

9

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and nee for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcome

Students of the program

PSO 1: will have sound technical skills in electronics and instrumentation.

PSO 2: will be capable of developing instrument systems and methods complying with standards.

PSO 3: will be able to learn new concepts, exhibit leadership qualities and adapt to changing industrial scenarios

	INDEX						
1	ASSIGNM	MENT SCHEDULE, SEMESTER PLAN					
2	SCHEME						
3	100903	/MA400A: PROBABILITY, RANDOM PROCESSES AND NUMERICAL					
	METHO	DS					
	3.1.	COURSE INFORMATION SHEET					
	3.2.	COURSE PLAN					
	3.3.	ASSIGNMENT					
4	100902	/EC400B: ANALOG CIRCUITS					
	4.1.	COURSE INFORMATION SHEET					
	4.2.	COURSE PLAN					
	4.3.	ASSIGNMENT					
5	100902	/EC400C: SIGNALS AND SYSTEMS					
	5.1.	COURSE INFORMATION SHEET					
	5.2.	COURSE PLAN					
	5.3.	ASSIGNMENT					
6	100002	AE400D: MEASUREMENTS AND INSTRUMENTATION					
	6.1.	COURSE INFORMATION SHEET					
	6.2.	COURSE PLAN					
	6.3.	ASSIGNMENT					
7	100908	CO900E : DESIGN & ENGINEERING					
	7.1.	COURSE INFORMATION SHEET					
	7.2.	COURSE PLAN					
	7.3.	ASSIGNMENT					
8	100908	/ES400F: CONSTITUTION OF INDIA					
	8.1.	COURSE INFORMATION SHEET					
	8.2.	COURSE PLAN					
	8.3.	ASSIGNMENT					
9	100902	/EC422S: ANALOG CIRCUITS AND SIMULATION LAB					
	9.1.	COURSE INFORMATION SHEET					
	9.2.	LAB CYCLE					
	9.3.	ADDITIONAL QUESTIONS					
10	100002	AE422T: TRANSDUCERS AND MEASUREMENTS LAB					
	10.1.	COURSE INFORMATION SHEET					
	10.2.	LAB CYCLE					
	10.3.	ADDITIONAL QUESTIONS					
11	100002	-AE401H: INSTRUMENTATION SYSTEM DESIGN					
	11.1	COURSE INFORMATION SHEET					
	11.2	COURSE PLAN					
	11.2	ASSIGNMENT					

ASSIGNMENT SCHEDULE					
Week 4	100903/MA400A: PROBABILITY, RANDOM PROCESSES AND				
	NUMERICAL METHODS				
Week 5	100902/EC400B: ANALOG CIRCUITS				
Week 5	100902/EC400C: SIGNALS AND SYSTEMS				
Week 6	100002/AE400D: MEASUREMENTS AND INSTRUMENTATION				
Week 7	100908/CO900E : DESIGN & ENGINEERING				
Week 8	100908/ES400F: CONSTITUTION OF INDIA				
Week 8	100903/MA400A: PROBABILITY, RANDOM PROCESSES AND				
	NUMERICAL METHODS				
Week 9	100902/EC400B: ANALOG CIRCUITS				
Week 9	100902/EC400C: SIGNALS AND SYSTEMS				
Week 12	100002/AE400D: MEASUREMENTS AND INSTRUMENTATION				
Week 12	100908/CO900E : DESIGN & ENGINEERING				
Week 13	100908/ES400F: CONSTITUTION OF INDIA				

SCHEME

SEMESTER IV

COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT
100903/MA400A	PROBABILITY, RANDOM PROCESS AND NUMERICAL METHODS	3-1-0	4	4
100902/EC400B	ANALOG CIRCUITS	3-1-0	4	4
100902/EC400C	SIGNALS AND SYSTEMS	3-1-0	4	4
100002/AE400D MEASUREMENTS AND INSTRUMENTATION		3-1-0	4	4
100908/C0900E	DESIGN & ENGINEERING	2-0-0	2	2
100908/ES400F	CONSTITUTION OF INDIA	2-0-0	2	Pass/Fail
100902/EC422S	ANALOG CIRCUITS AND SIMULATION LAB	0-0-3	3	2
100002/AE422T	TRANSDUCERS AND MEASUREMENTS LAB	0-0-3	3	2
	TOTAL		26	22

100903/MA400A: PROBABILITY, RANDOM PROCESSES AND NUMERICAL METHODS

COURSE INFORMATION SHEET

PROGRAMME: AEI		DEGREE	: BTECH		
COURSE: PROBABILIT	Y DISTRIBUTIONS, RANDOM	SEMEST	ER: 4 CREDI	ΓS:4	
PROCESSES AND N					
COURSE CODE: 100	908/MA400A	COURSE TYPE: CORE			
REGULATION:					
COURSEAREA/DOMA	IN:	CONTACT HOURS: 4 hours/Week.			
CORRESPONDING LAI	B COURSE CODE :	LAB COU	JRSE NAME:		
COURSE CODE	COURSE NAME		L	Т	
100908/MA400A	PROBABILITY, RANDOM PROCESSES AND NUME METHODS	I RICAL	3	1	

1. Preamble

This course introduces students to the modern theory of probability and statistics covering important models of random variables and analysis of random processes using appropriate time and frequency domain tools.

2. Prerequisite

A basic course in one-variable and multi-variable calculus.

Syllabus

	COURSE PLAN	
	COURSE NO: MA204	L-T-P:3-1-0
	COURSE NAME: RANDOM PROCESSES AND	CREDITS:4
	QUEUING THEORY	
MODULE	CONTENT	
Ι	Module 1: Discrete probability distributio	ns
	(Text-1: Relevant topics from sections-3.1-	3.4, 3.6, 5.1)
	Discrete random variables and their probabi	lity distributions-Expectation,
	mean and variance, Binomial distribution,	Poisson distribution-Poisson
	approximation to the binomial distri	ibution, Discrete bivariate
	distributions-marginal distributions-Indep	endent random variables-
	Expectation (multiple random variables).	

II	Module 2: Continuous probability distributions (Text-1:Relevant topics from sections-4.1-4.4, 3.6, 5.1)Continuous random variables and their probability distributions- Expectation, mean and variance, Uniform, exponential and normal distributions, Continuous bivariate distributions, marginal distributions, Independent random variables, Expectation (multiple random variables), i. i. d random variables and Central limit theorem (without proof).
111	Module 3: Random Processes (Text-2: <i>Relevant topics</i> from sections-8.1-8.5, 8.7, 10.5) Random processes and classification, mean and autocorrelation, Stationary Random Processes, wide sense stationary (WSS) processes, autocorrelation and power spectral density of WSS processes and their properties (White noise excluded), Poisson process-distribution of inter-arrival times, combination of independent Poisson processes(merging) and subdivision (splitting) of Poisson processes (results without proof).
IV	Module 4: Numerical methods -I (Text 3- Relevant topics from sections 19.1, 19.2, 19.3, 19.5) Errors in numerical computation-round-off, truncation and relative error, Solution of equations – Newton-Raphson method and Regula-Falsi method. Interpolation-finite differences- Newton's forward and backward difference method, Newton's divided difference method and Lagrange's method, Numerical integration-Trapezoidal rule and Simpson's 1/3rd rule (Gauss Integration and Numerical Differentiation excluded, Proof or derivation of the formulae not required for any of the methods in this module)
V	Module 5: Numerical methods –II (Text 3- <i>Relevant topics</i> from sections 20.3, 20.5, 21.1) Solution of linear systems-Gauss-Siedal and Jacobi iteration methods. Curve fitting-method of least squares, fitting straight lines and parabolas. Solution of ordinary differential equations-Euler and Classical Runge-Kutta method (second order excluded) Adams- Moulton predictor-correction method (Proof or derivation of the formulae not required for any of the methods in this module)

4. Text Books

- 1. (Text-1) Jay L. Devore, Probability and Statistics for Engineering and the Sciences, 8th edition, Cengage, 2012.
- 2. (Text-2) Oliver C. Ibe, Fundamentals of Applied Probability and Random Processes, Elsevier, 2005.
- 3. (Text-3) Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, John Wiley & Sons, 2016.

Reference Books

- 1. Hossein Pishro-Nik, Introduction to Probability, Statistics and Random Processes, Kappa Research, 2014 (Also available online at www.probabilitycourse.com)
- 2. V. Sundarapandian, Probability, Statistics and Queueing theory, PHI Learning,

2009

- 3. Gubner, Probability and Random Processes for Electrical and Computer Engineers, Cambridge University Press, 2006.
- 4. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36 Edition, 2010

6. Course O	utcomes
After the co	mpletion of the course the student will be able to
CO1	Understand the concept, properties and important models of discrete random variables and, using them, analyse suitable random phenomena
<i>CO2</i>	Understand the concept, properties and important models of continuous random variables and, using them, analyse suitable random phenomena.
СО3	Analyze random processes using autocorrelation, power spectrum and Poisson process model as appropriate
<i>CO4</i>	Compute roots of equations, evaluate definite integrals and perform interpolation on given numerical data using standard numerical techniques
<i>CO5</i>	Apply standard numerical techniques for solving systems of equations, fitting curves on given numerical data and solving ordinary differential equations

COURSE PRE-REQUISITES: nil

7. Mapping of Course Outcomes with Program Outcomes

	P01	PO2	P03	P04	PO5	P06	PO7	P08	P09	PO10	P01 1	P012
C01	3	2	2	2	2					2		1
CO2	3	2	2	2	2					2		1
CO3	3	2	2	2	2					2		1
CO4	3	2	2	2	2					2		1
C05	3	2	2	2	2					2		1

8. Assessment Pattern

Loorning	Continuous Internal E	End Semester			
Objectives	Internal Examination 1* (50)	Internal Examination 2* (50)	(ESE out of 100)		
Remember	10	10	10		
Understand	30	30	30		
Apply	30	30	30		
Analyze	20	20	20		
Evaluate	10	10	10		

Create		

*Internal examination (offline): 50 and Internal examination (online): 25

9. Mark Distribution

Total		CIE						
	Attendance Ex		Assignment/Quiz/ Course Project	Total				
150	10	25	15	50	100			

10. End Semester Examination Pattern

There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

GAPS / TOPICS BEYOND THE SYLLABUS TO MEET THE INDUSTRIAL REQUIREMENT: No gaps identified

WEB	WEB SOURCE REFERENCES:							
1	http://www.math.com/							
2	https://www.math.umn.edu/~olver/pdn.html,							
3	http://www.mheducation.co.in							
4	http://tutorial.math.lamar.edu/							
5	http://nptel.ac.in/							

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

🗆 CHALK & TALK	STUD. ASSIGNMENT	WEB RESOURCES	
LCD/SMART BOARDS	STUD. SEMINARS	ADD-ON COURSES	

ASSESSMENT METHODOLOGIES-DIRECT

ASSIGNMENTS	☐ STUD. SEMINARS	☐ TESTS/MODEL EXAMS	UNIV. EXAMINATION
🖾 STUD. LAB	🗆 STUD. VIVA	☐ MINI/MAJOR	CERTIFICATIONS
PRACTICES		PROJECTS	
ADD-ON COURSES	□ OTHERS		

ASSESSMENT METHODOLOGIES-INDIRECT

\square ASSESSMENT OF COURSE OUTCOMES (BY	STUDENT FEEDBACK ON FACULTY (TWICE)
FEEDBACK, ONCE)	
□ ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT.	□ OTHERS
EXPERTS	

Prepared by

Approved by Dr. ANTONY V VARGHESE

MARIA SEBASTIAN

(HOD)

No	Topic	No. of Lectures
1	Module1 Discrete Probability distributions	
1.1	Discrete random variables and their probability distributions,	3
	Expectation, mean and variance (discrete)	
1.2	Binomial distribution-mean and variance, Poisson distribution-	3
	mean, variance, Poisson approximation to binomial	2
1.3	Discrete bivariate distributions, marginal distributions,	3
	random variables)	
2	Module 2 Continuous Probability distributions	
2 1	Continuous dom contributions de la contributions	2
2.1	Expectation, mean and variance (continuous)	2
2.2	Uniform, exponential and normal distributions, mean and variance of these distributions	4
2.3	Continuous bivariate distributions, marginal distributions,	3
	Independent random variables, Expectation (multiple random	
	variables), i. i. d random variables and Central limit theorem.	
3	Module 3 Random Processes	
3.1	Random processes and classification	1
3.2	Mean and autocorrelation, Stationary Random Processes	2
3.3	WSS processes, autocorrelation and power spectral density of WSS processes and their properties, (White noise excluded)	2
3.4	Poisson process-distribution of inter-arrival times	2
3.5	combination of independent Poisson processes(merging) and	2
	subdivision (splitting) of Poisson processes (results without proof)	
4	Module 4 Numerical methods-I	
4.1	Roots of equations- Newton-Raphson, Regula-Falsi methods	2
4.2	Interpolation-finite differences, Newton's forward and backward formula	3
4.3	Newton's divided difference method, Lagrange's method	2
4.4	Numerical integration-trapezoidal rule and Simpson's 1/3-rd rule	2
5	Module 5 Numerical methods-II	
5.1	Solution of linear systems-Gauss-Siedal method, Jacobi iteration method	2
5.2	Curve-fitting-fitting straight lines and parabolas to pairs of data points using method of least squares.	2
5.3	Solution of ODE-Euler and Classical Runge-Kutta methods of fourth order.	4
5.4	Adams-Moulton predictor-corrector methods	1

Module 1

Assignment

- 1. If the random variable X takes the values 1,2,3 and 4 such that 2P(X = 1) = 3P(X = 2) = P(X = 3) = 5P(X = 4), find the probability distribution and cumulative distribution function of X.
- Suppose that the probabilities are 0.4, 0.3, 0.2, and 0.1 that there will be 0, 1, 2, or 3 power failures in a
 certain city during the month of July. Find the mean and variance of this probability distribution.
- During one stage in the manufacture of integrated circuit chips, a coating must be applied. If 70 % of chips
 receive a thick enough coating, use Binomial distribution to find the probabilities that, among 15 chips
 - (a) at least 12 will have thick enough coating;
 - (b) at most 6 will have thick enough coating;
 - (c) exactly 10 will have thick enough coating.
- 4. In an examination, a candidate has to answer 15 multiple choice questions each of which has 4 choices for the answer. He knows the correct answer to 10 questions and for the remaining 5 questions he chooses the answer randomly.
 - (a) What is the probability that he answers 13 or more questions correctly?
 - (b) What is the mean and variance of the number of correct answers he gives?
- 5. A complex electronic system is built with a certain number of backup components in its subsystems. One subsystem has four identical components, each with a probability of 0.2 of failing in less than 1000 hours. The subsystem will operate if any two of the four components operating. Assume that the components operate independently. Find the probability that
 - (a) exactly two of the four components last longer than 1000 hours.
 - (b) the subsystem operates longer than 1000 hours.
- If the sum of the mean and variance of a binomial distribution for 5 trials is 1.8, find the probability distribution function.
- 7. The probability of an item produced by a certain machine will be defective is 0.05. If the produced items are sent to the market in packets of 20, find the number of packets containing (i) atleast 2 (ii) exactly 2 (ii) atmost 2 defective items in a consignment of 1000 packets using Poisson distribution.
- 8. Customers arrive at a counter at an average of 1.5 per minute. Find the probability that:
 - (a) at most 4 will arrive in any given minute
 - (b) at least 3 will arrive during an interval of 2 minutes
- 9. A service station has both self-service and full-service islands. On each island, there is a single regular unleaded pump with two hoses. Let X denote the number of hoses being used on the self-service island at a particular time, and let Y denote the number of hoses on the full-service island in use at that time. The joint pmf of X and Y appears in the accompanying tabulation.

		у				
p()	x,y)	0	1	2		
X	0	0.1	0.04	0.02		
1		0.08	0.2	0.06		
	2	0.06	0.14	0.30		

- (a) What is P(X = 1 and Y = 1)?
- (b) Compute $P(X \le 1)$ and $P(Y \le 1)$.
- (c) Give a word description of the event $\{X \neq 0 and Y \neq 0\}$, and compute the probability of this event.
- (d) Compute the marginal pmf of X and of Y.

10. An instructor has given a short quiz consisting of two parts. For a randomly selected student, let X be the number of points earned on the first part and Y be the number of points earned on the second part. Suppose that the joint pmf of X and Y is given in the accompanying table.

		у					
p()	x,y)	0	5	10	15		
Х	0	0.02	0.06	0.02	0.1		
	5	0.04	0.15	0.2	0.1		
	10	0.01	0.15	0.14	0.01		

- (a) If the score recorded in the grade book is the total number of points earned on the two parts, what is the expected recorded score E(X + Y)?
- (b) If the maximum of the two scores is recorded, what is the expected recorded score?

Module2

Assignment

1. In commuting to work, I must first get on a bus near my house and then transfer to a second bus. If the waiting time (in minutes) at each stop has a uniform distribution with A = 0 and B = 5, then it can be shown that my total waiting time Y has the pdf

$$f(y) = \begin{cases} y/25 & 0 \le y < 5\\ 2/5 - y/25 & 5 \le y \le 10\\ 0 & otherwise \end{cases}$$

- (a) Sketch a graph of the pdf.
- (b) Verify that f is a pdf.
- (c) What is the probability that total waiting time is at most 3 min?
- (d) What is the probability that total waiting time is at most 8 min?
- (e) What is the probability that total waiting time is between 3 and 8 min?
- (f) What is the probability that total waiting time is either less than 2 min or more than 6 min?
- 2. Let X denote the amount of time a book on 2 hour reserve is actually checked out, and suppose the cdf is

$$F(x) = \begin{cases} 0 & x < 0\\ x^2/4 & 0 \le x < 2\\ 1 & 2 \le x \end{cases}$$

Use the cdf to obtain the following:

(a) P(X ≤ 1)
(b) P(.5 ≤ X ≤ 1)
(c) P(X > 1.5)
(d) The median checkout duration
(e) the density function f(x)
(f) E(X), V(X), σ_X

1

3. Suppose the force acting on a column that helps to support a building is normally distributed with mean 15.0 kips and standard deviation 1.25 kips. What is the probability that the force

a. Is at most 18 kips?

b. Is between 10 and 12 kips?

c. Differs from 15.0 kips by at most 1.5 standard deviations?

- 4. The article "Reliability of Domestic-Waste Biofilm Reactors" (J. of Envir. Engr., 1995: 785–790) suggests that substrate concentration (mg/cm3) of influent to a reactor is normally distributed with mean = .30 and SD = .06.
 - a. What is the probability that the concentration exceeds .25?
 - b. What is the probability that the concentration is at most .10?
 - c. How would you characterize the largest 5% of all concentration values?
- 5. The weight distribution of parcels sent in a certain manner is normal with mean value 12 lb and standard deviation 3.5 lb. The parcel service wishes to establish a weight value c beyond which there will be a surcharge. What value of c is such that 99% of all parcels are at least 1 lb under the surcharge weight?
- 6. Let X denote the distance (m) that an animal moves from its birth site to the first territorial vacancy it encounters. Suppose that for banner-tailed kangaroo rats, X has an exponential distribution with parameter $\lambda = .01386$ (as suggested in the article "Competition and Dispersal from Multiple Nests," Ecology, 1997: 873–883).
 - a. What is the probability that the distance is at most 100 m? At most 200 m? Between 100 and 200 m?
 - b. What is the probability that distance exceeds the mean distance by more than 2 standard deviations?
 - c. What is the value of the median distance?
- 7. A consumer is trying to decide between two long-distance calling plans. The first one charges a flat rate of 10ϕ per minute, whereas the second charges a flat rate of 99ϕ for calls up to 20 minutes in duration and then 10ϕ for each additional minute exceeding 20 (assume that calls lasting a non integer number of minutes are charged proportionately to a whole-minute's charge). Suppose the consumer's distribution of call duration is exponential with parameter λ .

Which plan is better if expected call duration is 10 minutes? 15 minutes?

8. Each front tire on a particular type of vehicle is supposed to be filled to a pressure of 26 psi. Suppose the actual air pressure in each tire is a random variable— X for the right tire and Y for the left tire, with joint pdf

$$f(x,y) = \begin{cases} K(x^2 + y^2) & 20 \le x \le 30, 20 \le y \le 30\\ 0 & \text{otherwise} \end{cases}$$

- a. What is the value of K?
- b. What is the probability that both tires are underfilled?
- c. What is the probability that the difference in airpressure between the two tires is at most 2 psi?
- d. Determine the (marginal) distribution of air pressure in the right tire alone.
- e. Are X and Y independent rv's?
- 9. Annie and Alvie have agreed to meet for lunch between noon (0:00 P.M.) and 1:00 P.M. Denote Annie's arrival time by X, Alvie's by Y, and suppose X and Y are independent with pdfs

$$f_X(x) = \begin{cases} 3x^2 & 0 \le x \le 1\\ 0 & otherwise \end{cases}$$
$$f_Y(y) = \begin{cases} 2y & 0 \le x \le 1\\ 0 & otherwise \end{cases}$$

What is the expected amount of time that the one who arrives first must wait for the other person?

10. Let $X_1, X_2, ..., X_{100}$ denote the actual net weights of 100 randomly selected 50-lb bags of fertilizer.

a. If the expected weight of each bag is 50 and the variance is 1, calculate $P(49.9 \le X \le 50.1)$ (approximately) using the CLT.

b. If the expected weight is 49.8 lb rather than 50 lb so that on average bags are underfilled, calculate $P(49.9 \le X \le 50.1)$.

Module 3

ASSIGNMENT

1. Let {X(t)} be a stochastic process with no periodic components and ACF is $R(\tau) = \frac{1+\tau}{\tau}$

Then find V(X(t)).

- 2. If $X(t) = \sin(\omega t + Y)$ where Y is uniformly distributed in $(0, 2\pi)$, prove that $\{X(t)\}$ is a WSS process.
- 3. If the PSD of a WSS process is given by

$$S(\omega) = \omega^2, -1 \le \omega \le 1$$
 and 0, otherwise

Find the ACF of the process.

- 4. Suppose that customers arrive at a bank according to a Poisson process with a mean rate of 3 per minute; find the probability that during a time interval of 2 min (i) exactly 4 customers arrive and (ii) more than 4 customers arrive.
- 5. A machine goes out of order, whenever a component fails. The failure of this part follows a Poisson process with a mean rate of 1 per week. Find the probability that 2 weeks have elapsed since last failure. If there are 5 spare parts of this component in an inventory and that the next supply is not due in 10 weeks, find the probability that the machine will not be out of order in the next 10 weeks.
- A radioactive source emits particles at a rate of 5 per minute in accordance with Poisson process. Each particle emitted has a probability 0.6 of being recorded. Find the probability that 10 particles are recorded in 4-min period.
- On the average, a submarine on patrol sights 6 enemy ships per hour. Assuming that the number of ships sighted in a given length of time is a Poisson variate, find the probability of sighting
 - a. 6 ships in the next half-an-hour,
 - b. 4 ships in the next 2 h,
 - c. At least 1 ship in the next 15 min and
 - d. At least 2 ships in the next 20 min.
- 8. Patients arrive randomly and independently at a doctor's consulting room from 8 A.M. at an average rate of one in 5 min. The waiting room can hold 12 persons. What is the probability that the room will be full when the doctor arrives at 9 A.M.?
- 9. A radioactive source emits particles at a rate of 6 per minute in accordance with Poisson process. Each particle emitted has a probability of 1/3 of being recorded. Find the probability that at least 5 particles are recorded in a 5-min period.

Module 4

ASSIGNMENT

- 1. Use Newton-Raphson's Formula to solve $e^{-x} \tan x = 0$, $x_0 = 1$.
- 2. Using Lagrange's interpolation formula, find the values of y when x = 5, from the following table

3. Using Newtons formula, interpolate the data f(1.0) = 0.94608, f(1.5) = 1.32468, f(2.0) = 1.60541, f(2.5) = 1.77852. Find the value of f(1.25).

- Using Newton's Formula compute ³√7.
- 5. The following table gives the population of the town during the last 6 census. Estimate, using Newton's interpolation formula, the increase in the population during the period 1946 to 1948.

Year	1911	1921	1931	1941	1951	1961
Population (in thousands)	12	15	20	27	39	52

Using Newton's divided difference formula find f(3.75)

x	2.5	3	3.5	4	4.5
у	24	22	20	18	17

7. Using Lagrange's interpolation formula, fit a polynomial to the given data and hence find y(2).

x 1 3 4 y 1 27 64 Module 5

1. Solve by Jacobi's method

$$10x + 3y - 4z = 8$$

$$x - 10y + 2z = 6$$

$$x + y - 10z = 7$$

2. Solve the system of equations by (i) Gauss-Jacobi method (ii)Gauss- Seidel method.

$$10x + 2y + z = 9$$

2x + 20y - 2z = -44
-2x + 3y + 10z = 22.

- 3. Using the method of least squares, fit a straight line to (0,2), (2,0), (3,-2), (5,-3).
- 4. Using Euler's method, find an approximate value of y corresponding to x = 1.5 given

that
$$\frac{dy}{dx} = x + 2y$$
 and $y = 1$ when $x = 1$.

- Using fourth order Runge- Kutta method solve the initial value problem y' =x + y, y(0) = 1 in the interval (0,).2) by taking h = 0.1.
- Solve the following for y(0.1), y(0.2) using Runge-Kutta method of (i)second order (ii) fourth order
 - (a) $\frac{dy}{dx} + y = 0$, y(0) = 1 (b) $\frac{dy}{dx} + 2y = x$, y(0) = 1
- 7. Solve using Euler method, y' + 0.2y = 0, y(0) = 5, h = 0.2.
- 8. Apply Jacobi method to solve 5x 2y + 3z = -1

$$-3x + 9y + z = 2$$

$$2x - y - 7z = 3$$

9. Fit a straight line for the following data

x	1	3	4	6	8	9	11	14
y	1	2	4	4	5	7	8	9

10. Fit a parabola to the data

(0,1),(1,1.8),(2,1.3),(3,2.5),(4,6.3)

TUTORIALS

Module-1 : Discrete Probability Distributions Tutorial

- 1. A random variable X has the following probability mass function X: 0 1 2 3 4 5 6 7 P(X): 0 k 2k 2k 3k k^2 $2k^2$ $7k^2 + k$ Find (i) the value of k (ii) P(0 < X < 5) (iii) $P(X \ge 6)$
- 2. A random variable X takes values 0,1, 2 and 3 with probabilities $P(X = 0) = \frac{8}{15}$, $P(X = 1) = \frac{1}{3}$, $P(X = 2) = P(X = 3) = \frac{1}{15}$. Find the mean and variance of X. If Y = 1000 + 300X, find $P(Y \ge 1500)$ and E[Y].
- 3. An insurance company agent accepts policies of 5 men, all of identical age and good health. Probability that a man of this age will be alive 30 years is $\frac{2}{3}$. Find the probability that in 30 years (i) all 5 men will be alive (ii) at least one man will be alive.
- The probability that a component is acceptable is 0.93. Ten components are picked at random. What is the probability that:

(i) At least nine are acceptable ii) At most three are acceptable.

- In a given city 6% of all drivers get at least one parking ticket per year. Use the Poisson approximation to the binomial distribution to determine the probabilities that among 80 drivers (randomly chosen in this city)
 - (a) 4 will get at least one parking ticket in any given year
 - (b) at least 3 will get at least one parking ticket in any given year
 - (c) anywhere from 3 to 6 inclusive, will get at least one parking ticket in any given year.

Module-2 : Continuous Probability Distributions Tutorial

- 1. What can you say about P(X = a) for any real number a when X is a (i) discrete random variable? (ii) continuous random variable?
- 2. A string, 1 meter long, is cut into two pieces at a random point between its ends. What is the probability that the length of one piece is at least twice the length of the other?
- 3. A random variable has a normal distribution with standard deviation 10. If the probability that it will take on a value less than 82.5 is 0.82, what is the probability that it will take on a value more than 58.3?
- 4. X and Y are independent random variables with X following an exponential distribution with parameter μ and Y following and exponential distribution with parameter λ . Find $P(X + Y \le 1)$.
- 5. Find the mean and variance of the continuous random variable X with probability density function

$$f(x) = \begin{cases} 2x - 4 & 2 \le x \le 3\\ 0 & \text{otherwise} \end{cases}$$

MODULE III RANDOM PROCESSES

TUTORIAL

- 1. Find the PSD function of a stationary process whose ACF is e-lel.
- If X(t) = Y cos t + Z sin t for all t where Y and Z are independent binary r.v"s, each of which
 assumes the values -1 and 2 with probabilities 2/3 and 1/3 respectively, prove that {X(t)} is a WSS
 process.
- Calculate the autocorrelation function of the process X(t) = A sin (ωt + Y) where Y is uniformly distributed in (0, 2π) and A and ω are constants.
- 4. If X(t) is a WSS process with ACF $R(r) = e^{-c^2}$ the find the PSD function
- If X(t) = A sin (ωt + θ) where A and ω are constants and θ is uniformly distributed in (-π, π), find the autocorrelation of {Y(t)}, where Y(t) = X²(t).

MODULE IV NUMERICAL TECHNIQUES -I

TUTORIAL

- 1. Find the real root of $\cos x x + 2 = 0$, correct to five decimal places using Regula-falsi method.
- Calculate the Lagrange Polynomial for the values Γ(1.00) = 1.0000, Γ(1.02) = 0.9888, Γ(1.04) = 0.9784 of the Gamma function and from it approximations of Γ(1.01) and Γ(1.03).
- 3. Apply Newton's method to compute the roots of $2x \cos x = 0$, $x_0 = 1$
- Given sin 45° = 0.7071, sin 50° = 0.7660, sin 55° = 0.8192, sin 60° = 0.8660, find sin 52°, usingNewton's forward interpolation formula.
- 5. Evaluate the integral $\int_0^1 e^{x^2}$ by rectangular rule with subintervals of length 0.1.

TUTORIAL QUESTIONS

- 1. Using Gauss-Seidel method, solve the system of equations 5x + 2y + z = 12x + 4y + 2z = 15x + 2y + 5z = 20
- 2. Fit a parabola through (0,5), (2,4), (4,1), (6.6), (8,7) using method of least squares.
- 3. Solve $\frac{dy}{dx} = y \frac{2x}{y}$, y(0) = 1, h = 0.1. Find y(0.2) using Euler's method.
- Using Runge- Kutta method of second order, find y(0.2) for the equation ^{dy}/_{dx} = ^{y-x}/_{y+x}, y(0) = 1, take h = 0.1.
- Solve the IVP by Adam-Moulton method y' =y, y(0) = 1, h = 0.1, y(0.1) = 1.105171, y(0.2) = 1.221403, y(0.3) = 1.349858.

100902/EC400B: ANALOG CIRCUITS

COURSE INFORMATION SHEET

PROGRAMME: Applied Electronics &	DEGREE: BTECH
Instrumentation Engineering	
COURSE: ANALOG CIRCUITS	SEMESTER: IV CREDITS: 4
COURSE CODE: 100902/EC400B	COURSE TYPE: CORE
REGULATION: 2019	
COURSE AREA/DOMAIN: ELECTRONICS	CONTACT HOURS: 3+1(Tutorial)
	hours/Week.
CORRESPONDING LAB COURSE CODE (IF	LAB COURSE NAME: ANALOG
ANY): ECL 202	CIRCUITS AND SIMULATION LAB

SYLLABUS:

UNI	DETAILS	HOURS
Т		
Ι	 Wave shaping circuits: First order RC differentiating and integrating circuits, First order RC low pass and high pass filters. Diode Clipping circuits - Positive, negative and biased clipper. Diode Clamping circuits - Positive, negative and biased clamper. Transistor biasing: Need, operating point, concept of DC load line, fixed bias, self bias, voltage divider bias, bias stabilization. 	10
Π	 BJT Amplifiers: RC coupled amplifier (CE configuration) – need of various components and design, Concept of AC load lines, voltage gain and frequency response. Small signal analysis of CE configuration using small signal hybrid-pi model for mid frequency and low frequency. (gain, input and output impedance). High frequency equivalent circuits of BJT, Miller effect, Analysis of high frequency response of CE amplifier. 	9
III	MOSFET amplifiers: MOSFET circuits at DC, MOSFET as an	
	amplifier, Biasing of discrete MOSFET amplifier, small signal equivalent circuit. Small signal voltage and current gain, input and output impedance of CS configuration. CS stage with current source load, CS stage with diode-connected load	9
	Multistage amplifiers - effect of cascading on gain and bandwidth. Cascode amplifier.	
IV	Feedback amplifiers: Effect of positive and negative feedback on gain, frequency response and distortion. The four basic feedback topologies, Analysis of discrete BJT circuits in voltage-series and voltage-shunt feedback topologies - voltage gain, input and output impedance.	10
	Oscillators: Classification, criterion for oscillation, Wien bridge oscillator, Hartley and Crystal oscillator. (working principle and design equations of the circuits; analysis of Wien bridge oscillator only required).	

V	 Power amplifiers: Classification, Transformer coupled class A power amplifier, push pull class B and class AB power amplifiers, complementary-symmetry class B and Class AB power amplifiers, efficiency and distortion (no analysis required) Regulated power supplies: Shunt voltage regulator, series voltage regulator, Short circuit protection and fold back protection, Output current boosting. 	7
	TOTAL HOURS	45

T/R	BOOK TITLE/AUTHORS/PUBLICATION
1	Sedra and Smith: Microelectronic Circuits, 4/e, Oxford University Press 1998.
2	B. Razavi, "Fundamentals of Microelectronics", Wiley
3	Donald A Neamen. : Electronic Circuit Analysis and Design, 3/e, TMH.
4	Millman and Halkias: Integrated Electronics, TMH, 2004.
5	Spencer & Ghausi: Introduction to Electronic Circuit Design, Pearson Education, 2003.
6	Roger T. Howe, Charles G. Sodini: <i>Microelectronics: An Integrated Approach</i> , Pearson Education, 1997.
7	R E Boylstead and L Nashelsky: <i>Electronic Devices and Circuit Theory</i> , 9/e, Pearson Education

COURSE PRE-REQUISITES

C.CODE	COURSE NAME	DESCRIPTION	SE
			M
EST130	Basics of Electrical and	Students should know about basic	1^{st}
	Electronics Engineering	electronics components like BJT,	Se
		diode, Resistor etc&its working	m

COURSE OBJECTIVES:

1	To understand the concept of first order RC circuits& diodes
2	To provide insight into the working, analysis and design of basic analog circuits using
	ВЈТ
3	To provide insight into the working, analysis and design of basic analog circuits using
	MOSFET
4	To understand different types of feedback amplifiers& Oscillators
5	To provide insight into the working of different types power amplifiers and regulated
	power supply circuits.

COURSE OUTCOMES:

SNO	DESCRIPTION
1	Students will be able to understand the working and design of first order RC circuits& diodes
2	Students will be able to analyze basic amplifier configuration using BJT.

3	Students will be able to analyze basic amplifier configuration using MOSFET.
4	Students can apply the principle of different feedback amplifiers& Oscillators.
5	Students can apply the principle of power amplifiers& regulated power supply
	circuits.

CO-PO AND CO-PSO MAPPING

CO No.	Programme Outcomes (POs)									Programme-Specific Outcomes (PSOs)		-Specific (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3										2	3	2	1
2	3	3										2	3	2	1
3	3	3										2	3	2	1
4	3	3										2	3	2	1
5	3	3										2	3	2	1
EC01	3	3										2	3	3	1
0 205															

JUSTIFATIONS FOR CO-PO MAPPING

MAPPING	LOW/MEDIUM/	JUSTIFICATION						
	HIGH							
СО.1-РО1	Н	Working of diodes and RC circuits require mathematical						
		background, to solve engineering problems						
<i>CO.1 – PO2</i>	Н	Understanding the basic diode circuits helps students to reach						
		better conclusions when faced similar cases						
<i>CO.1 –</i>	М	Understanding the design of basic circuits with diodes helps						
P012		students in learning new circuits in future						
CO.1 - PSO1	Н	Good understanding of concepts in electronics						
<i>CO.1 – PSO2</i>	М	To develop new circuits with the knowledge of basic diode						
		circuits						
<i>CO.1 – PSO3</i>	L	Ability to use the basic knowledge of working of RC circuits &						
		diodes to build new skills						
СО.2 - РО1	Н	Fundamental knowledge of basic BJT amplifier helps in applying						
		this knowledge for solving new problems						
СО.2- РО2	Н	Analyzing the working of BJT amplifier gives good understanding						
		of the concept						
<i>CO.2</i> –	М	Analyzing basic circuits like BJT configurations facilitates lifelong						
P012		learning						
CO.2 - PSO1	Н	Sound knowledge of the core concept of working of BJT as an						

		amplifier				
CO.2 – PSO2	М	Analyzing basic BJT amplifier working helps in developing new systems				
<i>CO.2 – PSO3</i>	L	Doing simulations with BJT helps in team building and leadership				
CO.3- PO1	D.3- PO1 H Fundamental knowledge of basic MOSFET amplifier help applying this knowledge for solving new problems					
CO.3 – PO2	Н	Analyzing the working of MOSFET amplifier gives good understanding of the concept				
CO.3 - PO12	М	Analyzing basic circuits like MOSFET amplifier facilitates lifelong learning				
CO.3 – PSO1	Н	Sound knowledge of the core concept of working of BJT as an amplifier				
CO.3 – PSO2	M	Analyzing basic MOSFET amplifier working helps in developing new systems				
<i>CO.3 – PSO3</i>	L	Doing simulations with MOSFET helps in team building and leadership				
<i>CO.4- PO1</i>	Н	Applying the basic knowledge of feedback amplifiers helps in controlling the gain in practical amplifiers				
CO.4 – PO2	Н	Applying the basic knowledge of feedback amplifiers & oscillators helps in analyzing research problems				
CO.4 - PO12	М	Learning to apply knowledge of feedback amplifiers & oscillators provides better understanding of new concepts in future				
CO.4 - PSO1	Н	Knowledge of feedback amplifiers & oscillators is important for better understanding of instrumentation systems				
CO.4 – PSO2	М	Proper selection of feedback amplifiers/oscillators equips the student to develop new instruments				
<i>CO.4 – PSO3</i>	L	Learns to adapt to new industrial scenarios				
<i>CO.5- PO1</i>	Н	Applying these concepts builds the foundation for building new circuits for solving engineering problems				
CO.5 – PO2	Н	Ability to review new research literature on power amplifiers & regulators				
CO.5 - PO12	М	Ability to implement circuit for daily life applications				
CO.5 - PSO1	Н	Knowledge of power amplifiers & regulators is important for better understanding of instrumentation systems				

CO.5 – PSO2	М	Selection of power amplifiers & regulators for the correct
		application equips the student to develop new instruments
		systems
CO.5 – PSO3	L	Learns to adapt to new industrial scenarios

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

SNO	DESCRIPTION	PROPOSED ACTIONS
1	Introduction to switching circuits	Lecture/Simulation assignments

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

SL NO	DESCRIPTION	PROPOSED ACTIONS
1	To learn TINA TI software by simulating the	1,2,3,4,5,6,9,10
	circuits in the syllabus and this will help the	
	students to perform well in the lab also.	

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

\checkmark	CHALK & TALK	✓	STUD.	\checkmark	WEB	
			ASSIGNMENT		RESOURCES	
>	LCD/SMART BOARDS		STUD SEMINARS	Al	DD-ON COURSES	

ASSESSMENT METHODOLOGIES-DIRECT

✓ ASSIGNMENTS	STUD. SEMINARS	✓ TESTS/MODEL	✓ UNIV.
		EXAMS	EXAMINATIO
			N
✓ STUD. LAB PRACTICES	STUD. VIVA	Micro/Mini/Main	CERTIFICATIONS
		PROJECTS	
ADD-ON COURSES	OTHERS		

ASSESSMENT METHODOLOGIES-INDIRECT

✓ ASSESSMENT OF COURSE OUTCOMES (BY	✓ STUDENT FEEDBACK ON		
FEEDBACK, ONCE)	FACULTY (TWICE)		
ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT.	OTHERS		
EXPERTS			

Prepared by

Approved by

Dr. Poornima S

Dr. Hari C V., HOD

COURSE P	LAN
----------	-----

Day	Module	Торіс	
1	1	Introduction to waveshaping circuits	
2	1	RC LPF & HPF - Response to step input - Qualitative and Quantitative analysis	
3	1	RC LPF & HPF - Response to pulse input - Qualitative and Quantitative analysis	
4	1	RC LPF & HPF - Response to square wave inputs - Qualitative and Quantitative analysis	
5	1	RC Integrator & Differentiator	
6	1	RC Integrator & Differentiator	
7	1	Shunt Clippers - transient waveform and transfer function	
8	1	Shunt Clippers - transient waveform and transfer function	
9	1	Series Clippers - transient waveform and transfer function	
10	1	Clampers - transient waveform and transfer function	
11	1	Tutorial1 - RC circuits	
12	1	Additional problems - RC circuits	
13	1	Additional problems - Clippers & clampers	
14	1	Biasing - need, stabilization & stability factors	
15	1	BJT biasing circuits - Fixed and Emitter bias circuits	
16	1	BJT biasing circuits - Voltage divider and Collector feedback circuits Tutorial - BJT Biasing circuits	
17	1	Transistor in the active region; Fixing of Q-point	
18	2	RC Coupled amplifier & Concept of AC and DC loadlines Small-signal hybrid pi model of a BJT	
19	2	Small signal analysis of CE amplifier	
20	2	Small signal analysis of CE amplifier	
21	2	Small signal analysis of CE amplifier without emitter bypass capacitor Small signal analysis of CB amplifier	
22	2	Small signal analysis of BJT amplifiers - Tutorial	
23	2	High frequency equivalent circuit of BJT, short circuit current gain, cut- off frequency	
24	2	Miller effect, Analysis of High frequency response of CE Amplifier	
25	3	MOSFET circuits at DC	
26	3	MOSFET as an amplifier, Biasing of discrete MOSFET amplifier	
27	3	Small signal equivalent circuit MOSFET CS configuration	
28	3	Small signal voltage and current gain, input and output impedances of CS configuration.	

29	3	Small signal voltage and current gain, input and output impedances of CS configuration.
30	3	CS stage with current source load, CS stage with diode-connected load.
31	3	CS stage with current source load, CS stage with diode-connected load.
32	3	Multistage amplifiers - effect of cascading on gain and bandwidth. Cascode amplifier.
33	4	Feedback Amplifiers - Effect on gain, frequency response and distortion
34	4	Feedback topologies & circuits, effect of feedback on input & output impedances
35	4	Analysis of discrete circuits in each feedback topologies
36	4	Oscillators - Classification, Barkheusen criterion,
37	4	Analysis of Wien Bridge Oscillator
38	4	Working of Hartley and Crystal oscillators
39	5	Power Amplifiers - Classification, Transformer coupled Class A power amplifier
40	5	Power Amplifiers - Push-pull class B and class AB power amplifiers
41	5	complementary- symmetry class B and Class AB power amplifiers, efficiency and distortion
42	5	Transformerless class B and class AB power amplifiers, class C power amplifier
43	5	Principle of Linear Regulated power supplies, Shunt voltage regulator
44	5	Series voltage regulator
45	5	Short circuit protection and fold back protection, Output current boosting

Assignment 1

CLIPPERS

1. Sketch the transfer characteristics of the following circuit, for a 10Vpp sine wave input:(Assume ideal diodes)

2. Sketch the output of the following circuit (a) for an ideal diode (b) for a non-ideal diode.

3. Sketch the output for the following circuit, for a 20Vpp input sine wave, given V=5V. (Assume ideal diodes)

4. 3. Sketch the output for the following circuit, for a 20Vpp input sine wave, given V=5V.(Assume ideal diodes)

5. Design a clipper circuit that clips any portion of the input AC waveform below 4 volts:

CLAMPERS

1. Sketch the output of the following circuit if the input is a 20Vpp sine wave.

2. Sketch the output of the following circuit if the input is a 20Vpp sine wave

3. Sketch the output of the following circuit if the input is a 20Vpp sine wave (Assumediode drop =0.7V)

4. Sketch the output of the following circuit if the input is a 20Vpp sine wave and V1=5V.

5. Sketch the output of the following circuit if the input is a 20Vpp sine wave and V1=5V.

6.

Design a clamper circuit that biases the AC waveform so it lies completely *below* (negative) the zero line:

7. Sketch the circuit of a biased positive clamper with a biasing voltage of $\pm 2V$ for a $\pm 10V$ square wave input. Also plot its output voltage waveform and explain its operation.

8. Design a clamper circuit using diode to obtain sine wave output with its negative peak clamped to +2.6V. (Assume diode drop as 0.6)

40. Design a clamper to perform the function indicated in Fig. 2.163.

* 41. Design a clamper to perform the function indicated in Fig. 2.164.

Figure 2.164 Problem 41

Tutorial Questions.

MODULE 1

RC CIRCUITS

- 1. Design a differentiator circuit to differentiate a square wave of 20V peak to peak amplitude and 1.5KHz frequency.
- 2. What is the condition for an RC circuit to behave as an integrator& differentiator respectively?
- 3. A square wave of peak to peak amplitude 4V extending ±2V with respect to ground is applied to a low pass RC circuit. The duration of positive section is 0.2sec and that of negative section is 0.1sec. Plot the output waveform. The time constant of the circuit is 0.2sec.
- 4. Design an integrator for an input frequency of 1kHz.
- 5. A high pass RC circuit has a 3dB cut off frequency of 10Hz. Plot the output waveform of the circuit, if a 20Hz symmetric square wave with 2V peak to peak is applied to it. Mark the time and voltage levels accurately.
- 6. Plot the response of high pass RC circuit to symmetrical square wave input of 2V peak to peak, 20Hz. Given the cut off frequency of filter is 10Hz
- 7. Derive 3-dB frequency of a high pass RC circuit.
- 8. Show how an RC circuit behaves as an integrator.
- 9. Plot the response of high pass RC circuit to symmetrical square wave input of 2V peak to peak, 20Hz. Given the cut off frequency of filter is 10Hz.

CLIPPERS

- 5. Design a suitable circuit to obtain the output level clipped at +3V and 4V for a 10V peak to peak sinusoidal input voltage.
- 6. What is the circuit given in the figure called ?

(a) Clipper (b) Clamper (c) Half wave rectifier (d) Full wave rectifier
7. What is the peak value of the output waveform of the following figure, if the input is a 20Vpp sine wave? (Assume diode is ideal)

8. Sketch the output of the following circuit (a) for an ideal diode (b) for a non-ideal diode

9. For the following figure, let the input be a 20Vppsinewave.

100902/EC400C: SIGNALS AND SYSTEMS

COURSE INFORMATION SHEET

PROGRAMME: Applied Electronics &	DEGREE: BTECH
Instrumentation	
COURSE: SIGNALS & SYSTEMS	SEMESTER: IV CREDITS: 4
<i>COURSE CODE: 100902/EC400C</i>	COURSE TYPE: CORE
REGULATION: 2019	
COURSE AREA/DOMAIN: SIGNALS &	CONTACT HOURS: 3(L)+1(T)hours/week
SYSTEMS	
CORRESPONDING LAB COURSE CODE (IF	LAB COURSE NAME:
ANY): NIL	

SYLLABUS:

UNIT	DETAILS	HOURS
I.1	Elementary Signals, Classification and representation of continuous time and discrete time signals, Signal operations	4
<i>I.2</i>	Continuous time and discrete time systems – Classification, Properties.	3
I.3	Representation of systems: Differential equation representation of continuous time systems. Difference equation representation of discrete systems.	2
<i>I.4</i>	Continuous time LTI systems and convolution integral.	2
<i>I.5</i>	Discrete time LTI systems and linear convolution.	2
<i>I.6</i>	Stability and causality of LTI systems.	2
<i>I.7</i>	Correlation between signals, Orthogonality of signals.	1
II.1	Frequency domain representation of continuous time signals -continuous time Fourier series and its properties.	4
II.2	Continuous time Fourier transform and its properties. Convergence and Gibbs phenomenon	3
II.3	Review of Laplace Transform, ROC of Transfer function, Properties of ROC, Stability and causality conditions.	3
<i>II.4</i>	Relation between Fourier and Laplace transforms.	1
III.1	Analysis of LTI systems using Laplace and Fourier transforms. Concept of transfer function, Frequency response, Magnitude and phase response.	4
<i>III.2</i>	Sampling of continuous time signals, Sampling theorem for low pass signals, aliasing.	3
IV.1	Frequency domain representation of discrete time signals, Discrete time fourier series for discrete periodic signals. Properties of DTFS.	4
<i>IV.2</i>	Discrete time fourier transform (DTFT) and its properties. Analysis of discrete time LTI systems using DTFT. Magnitude and phase response.	5
<i>V.1</i>	Z transform, ROC, Inverse transform, properties, Unilateral Z transform.	3
V.2	Relation between DTFT and Z-Transform, Analysis of discrete time LTI systems using Z transforms Transfer function. Stability and causality using Z transform.	4
	TOTAL HOURS	50

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
<i>T1</i>	Alan V. Oppenheim and Alan Willsky, Signals and Systems, PHI, 2/e, 2009
<i>T2</i>	Simon Haykin, Signals & Systems, John Wiley, 2/e, 2003
<i>R1</i>	Anand Kumar, Signals and Systems, PHI, 3/e, 2013.
<i>R2</i>	B P. Lathi, Priciples of Signal Processing & Linear systems, Oxford University Press.
<i>R3</i>	Gurung, Signals and System, PHI.
<i>R4</i>	Mahmood Nahvi, Signals and System, Mc Graw Hill (India), 2015.
<i>R5</i>	P Ramakrishna Rao, Shankar Prakriya, Signals and System, MC Graw Hill Edn 2013.
<i>R6</i>	Rodger E. Ziemer, Signals & Systems - Continuous and Discrete, Pearson, 4/e, 2013

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
		NIL	

COURSE OBJECTIVES:

	This course aims to lay the foundational aspects of signals and systems in both continuous
1	time and discrete time, in preparation for more advanced subjects in digital signal
	processing, image processing, communication theory and control systems.

COURSE OUTCOMES:

SI.No	Description	Blooms'
		Taxonomy Level
		Understand and
<i>C0.1</i>	Apply properties of signals and systems to classify them	Apply
		(level 2, 3)
	Represent signals with the help of series and transforms	Understand and
<i>C0.2</i>		Apply
		(level 2, 3)
	Describe orthogonality of signals and convolution integral.	Understand and
<i>C0.3</i>		Apply
		(level 2, 3)
	Apply transfer function to compute the LTI response to input signals.	Understand and
С0.4		Apply
		(level 2, 3)
	Apply sampling theorem to discretize continuous time signals	Understand and
С0.5		Apply
		(level 2, 3)

CO-PO AND CO-PSO MAPPING

	PO	P01	P01	<i>P01</i>	PS	PSO	PSO3								
	1	2	3	4	5	6	7	8	9	0	1	2	01	2	
С0	3	3	-	-	-	-	-	-	-	-	-	-	3	-	-
1															
СО	3	3	3	-	-	-	-	-	-	-	-	-	-	-	2
2															
CO	3	3	3	-	-	-	-	-	-	-	-	-	-	2	-
3															
CO	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
4															
С0	3	3	3	-	-	-	-	-	-	-	-	-	-	3	-
5															

CO – PO mapping justification

MAPPING	LOW/ MEDIUM /HIGH	JUSTIFICATION
С01-Р01	Н	Apply the knowledge of mathematics, science and engineering fundamentals to understand the concepts of signals & systems.
СО1-РО2	Н	Differential and difference equation representation of systems using the first principles of mathematics and engineering sciences.
CO1– PSO1	Н	Properties of signals and systems are applied to design and implement various electronics and instrumentation systems.
СО2-РО1	Н	Apply the knowledge of mathematics, science and engineering fundamentals to represent signals with the help of series and transforms.
С02-Р02	Н	Analyze signals with the help of Fourier series, Laplace, Fourier & Z transforms and study the properties of different transforms using the first principles of mathematics.
СО2-РО3	Н	Analyzing signals with the help of series and transforms helps in design solutions for complex engineering problems
CO2– PSO3	М	New concepts are studied.
С03-Р01	Н	Apply the knowledge of mathematics, science and engineering fundamentals to describe orthogonality of signals and convolution integral.
СО3-РО2	Н	Concept of orthogonality and convolution integral requires the first principles of mathematics.
СОЗ-РОЗ	Н	Analyzing orthogonality of signals & convolution integral helps in design solutions for complex engineering problems.
CO3– PSO2	М	Knowledge about the orthogonality of signals and convolution integral helps in the development of instrumentation systems.

CO4-PO1	н	Apply the knowledge of mathematics and engineering fundamentals to
07-101	11	compute the LTI response of a system to input signals
CO4 PO2	TT	Analysis and characterization of LTI systems using Laplace and Z-
C04-P02	п	Transform
		Apply the knowledge of mathematics and engineering fundamentals to
СО5-РО1	Н	understand the importance of sampling theorem to discretize continuous
		time signals.
СО5-РО? Н		Understand the Nyquist criteria and evaluate different sampling criteria
CO3-PO2	11	using the first principles of mathematics and engineering sciences.
CO5 DO2	Ц	The analysis of sampling theorem provides design solutions for different
005-P05	п	signal processing algorithms.
	Ц	Apply sampling theorem to discretize continuous time signals for
$CO_3 - FSO_2$	п	developing instrumentation systems.

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

SNO	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POs	RELEVANC E WITH PSOs
1	MATLAB Simulations	Assignments, projects	1,5	PSO3

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/INDUSTRY VISIT/GUEST LECTURER/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

SNO	DESCRIPTION	PROPOSED ACTIONS	RELEVANC E WITH POs	RELEVANC E WITH PSOs
1	Discrete Fourier Transform (DFT)	Video lectures		
			1,2	1
2	Fast Fourier Transform (FFT)	Video lectures	1,2	1

WEB SOURCE REFERENCES:

1	Signals and Systems NPTEL online IIT Mumbai
2	www.nptel.iitm.ac.in/courses/117104074/
3	www.ece.gatech.edu/users/bonnie/book/worked_problems.html
4	www.ece.jhu.edu/~cooper/courses/214/signalsandsystemsnotes.pdf
5	link.springer.com/journal/498

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

CHALK & TALK	☑ STUD.	WEB RESOURCES	ONLINE CLASSES
	ASSIGNMENT		
☑ LCD/SMART	☑ STUD. SEMINARS	□ ADD-ON COURSES	

BOARDS		

ASSESSMENT METHODOLOGIES-DIRECT

ASSIGNMENTS	ZSTUD. SEMINARS	TESTS/MODEL	UNIV. EXAMINATION
PRACTICES		PROJECTS	
□ ADD-ON	\Box OTHERS		
COURSES			

ASSESSMENT METHODOLOGIES-INDIRECT

ZASSESSMENT OF COURSE OUTCOMES (BY	STUDENT FEEDBACK ON FACULTY (TWICE)
FEEDBACK, ONCE)	
□ ASSESSMENT OF MINI/MAJOR PROJECTS	□ OTHERS
BY EXT. EXPERTS	

Prepared by	Approved by
Dr. Hari C.V.	Dr. Hari C.V.
Course in charge	(HoD/ DAEI)

Elementary Signals Classification and representation of continuous time and discrete time signals Signal operations Signal operations Continuous time and discrete time systems - Classification, Properties. Continuous time and discrete time systems - Classification, Properties. Continuous time and discrete time systems - Classification, Properties. Representation of systems: Differential equation representation of continuous time systems Difference equation representation of discrete systems Continuous time LTI systems and convolution integral Continuous time LTI systems and convolution integral Discrete time LTI systems and linear convolution. Discrete time LTI systems and linear convolution. Stability and causality of LTI systems Stability and causality of LTI systems Correlation between signals, Orthogonality of signals. Frequency domain representation of continuous time signals Frequency domain representation of continuous time signals Continuous time Fourier series and its properties. Continuous time Fourier series and its properties. Continuous time Fourier transform and its properties. Convergence and Gibbs phenomenon Convergence and Gibbs phenomenon

COURSE PLAN

24	2	Review of Laplace Transform
25	2	ROC of Transfer function, Properties of ROC
26	2	Stability and causality conditions
27	2	Relation between Fourier and Laplace transforms.
28	3	Analysis of LTI systems using Laplace and Fourier transforms.
29	3	Concept of transfer function
30	3	Frequency response
31	3	Magnitude and phase response
32	3	Sampling of continuous time signals
33	3	Sampling of continuous time signals
34	3	Sampling theorem for low pass signals, aliasing.
35	4	Frequency domain representation of discrete time signals
36	4	Frequency domain representation of discrete time signals
37	4	Discrete time fourier series for discrete periodic signals
38	4	Discrete time fourier series for discrete periodic signals
39	4	Properties of DTFS
40	4	Properties of DTFS
41	4	Discrete time fourier transform (DTFT) and its properties
42	4	Discrete time fourier transform (DTFT) and its properties
43	4	Discrete time fourier transform (DTFT) and its properties
44	4	Analysis of discrete time LTI systems using DTFT
45	4	Analysis of discrete time LTI systems using DTFT
46	4	Magnitude and phase response
47	5	Z transform, ROC

48	5	Z transform, ROC
49	5	Inverse transform
50	5	Inverse transform
51	5	Properties, Unilateral Z transform
52	5	Relation between DTFT and Z-Transform
53	5	Analysis of discrete time LTI systems using Z transforms, Transfer function
54	5	Analysis of discrete time LTI systems using Z transforms, Transfer function
55	5	Stability and causality using Z transform.
56	5	Stability and causality using Z transform.
57	5	Revision
58	5	Revision

ASSIGNMENT I

1. Check whether the following signals are periodic. If periodic, find the fundamental time period.

(a) $x(t) = cos(60\pi t) + sin(50\pi t)$ (b) $x(n) = e^{i(\frac{2\pi}{3})n} + e^{i(\frac{3\pi}{4})n}$

Determine whether the following signals are energy signals, power signals, neither energy nor power signals.

(a) x(t) = tu(t)(b) $x(n) = (\frac{1}{3})^n u(n)$

- Obtain the linear convolution of x1(t) and x2(t), where x1(t) = r(t) and x2(t) = e^{-2t}u(t)
- 4. Find the convolution of

(a) x(n) = u(n) − u(n−7) and h(n) = u(n−1) − u(n−4)
 (b) x(n) = u(n) and h(n) = 2ⁿu(n)

 Find whether the following systems are stable or not if x() represents input, y() represents output and h() represents impulse response

(a) $y(t) = e^{x\psi}$, where $|x(t)| \le 8$ (b) $h(t) = e^{2t}u(t)$ (c) $y(n) = \delta(n) + \frac{1}{2}\delta(n-1) + \frac{1}{4}\delta(n-2)$ (d) $h(n) = a^n$ for 0 < n < 11(e) h(t) = (t+5)u(t)

6. Find even and odd components of the following signals.

(a) x(t) = cos(t) + sin(t) + cos(t) sin(t)(b) $x(n) = \{-2, 1, 2, -1, 3\}$

7. A system has the transfer function

$$H(S) = \frac{3s-1}{s^2+5s+6}$$

(a) Find the impulse response by assuming that the system is

i. Stable

- ii. Causal
- (b) Can this system be both stable and causal ? Justify
- 8. Find the transfer function of the system described by the differential equation

$$\frac{d^2}{dt^2}y(t) + 2\frac{d}{dt}y(t) + y(t) = \frac{d}{dt}x(t) - 2x(t)$$

Determine the transfer function and the impulse response for the causal linear time-invariant system described by the differential equation

$$\frac{d^2}{dt^2}y(t) + 3\frac{d}{dt}y(t) + 2y(t) = 2\frac{d}{dt}x(t) - 3x(t)$$

10. Determine the unit step response for the causal LTI system described by the differential equation

$$\frac{d^2}{dt^2}y(t) + 3\frac{d}{dt}y(t) + 2y(t) = \frac{d}{dt}x(t) + 10x(t)$$

ASSIGNMENT 2

- 1. Explain the Gibbs phenomenon.
- 2. State and prove the properties of Continuous Time Fourier Transform.

Tutorial 1

1. Find the inverse Z transform of

$$X[z] = \frac{\frac{1}{4}z^{-1}}{(1 - \frac{1}{2}z^{-1})(1 - \frac{1}{4}z^{-1})}$$

if ROC is $\frac{1}{4} < |z| < \frac{1}{2}$

2. A system has the transfer function

$$H(S) = \frac{3s - 1}{s^2 + 5s + 6}$$

(a) Find the impulse response by assuming that the system is

i. Stable

ii. Causal

- (b) Can this system be both stable and causal ? Justify
- Find the transfer function and the impulse response of the for the causal linear time-invariant system described by the differential equation

$$\frac{d^2}{dt^2}y(t) + 3\frac{d}{dt}y(t) + 2y(t) = 2\frac{d}{dt}x(t) - 3x(t)$$

4. Determine the unit step response for the causal LTI system described by the differential equation

$$\frac{d^2}{dt^2}y(t) + 3\frac{d}{dt}y(t) + 2y(t) = \frac{d}{dt}x(t) + 10x(t)$$

Tutorial 2

- 1. Determine the transfer function of the system described by the difference equation y(n) = x(n) + 0.81x(n-1) 0.81x(n-2) 0.45y(n-2), where y(n) represents the output and the x(n) represents the input.
- 2. Determine the impulse response of the causal LTI system described by the difference equation y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) where y(n) represents the output and the x(n) represents the input.
- 3. A causal linear time invariant system has an impulse response $h(n) = \left(\frac{1}{3}\right)^n u(n)$. Determine the transfer function and difference equation representation of the system. Also determine the input to the system if the output is given by $y(n) = \left(\frac{1}{2}\right)u(n) + \frac{1}{4}\left(\frac{-1}{3}\right)^n u(n)$, where u(n) represents the unit step signal.

100002/AE400D MEASUREMENTS AND INSTRUMENTATION

COURSE INFORMATION SHEET

PROGRAMME: Applied Electronics and	DEGREE: BTECH
Instrumentation	
COURSE: MEASUREMENTS AND	SEMESTER: 4 CREDITS: 4
INSTRUMENTATION	
COURSE CODE: AET 206	COURSE TYPE: CORE
REGULATION: KTU 2019	
COURSE AREA/DOMAIN: INSTRUMENTATION	CONTACT HOURS: 4 hours/Week.
CORRESPONDING LAB COURSE CODE (IF ANY):	LAB COURSE NAME: TRANSDUCERS
AEL204	AND MEASUREMENTS LAB

SYLLABUS:

UNIT	DETAILS	HOURS
1	Principles of Measurements, Standards- Calibration of Meters- Qualities of Measurements-Accuracy, precision, sensitivity, resolution, loading effect Characteristics, safety measures - Errors in Measurement and its Analysis	9
2	Indicating instruments Deflection type-principles and operation, moving coil, moving iron, dynamometer, induction, thermal, electrostatic and rectifier type meters Grounding and Shielding of measuring systems.	8
3	Transducers, principles, application of basic transducers: LVDT, temperature sensors, thermocouples, RTD, LDR, displacement transducer, strain gauges, accelerometers, piezoelectric transducers, Hall effect transducers, manometers, photoelectric transducers	9
4	Dc Bridges: Introduction, Sources And Detectors For Dc Bridges, General Equation For Bridge At Balance, Types Of Bridges- Wheatstone, Kelvin, Carry Foster Slide Wire Bridge. Ac Bridges: Introduction, Source And Detectors For Ac Bridges, General Equation For Bridge At Balance, Maxwells Inductance-Capacitance Bridge, Anderson Bridge, Shering bridge.	9
5	Cathode ray oscilloscopes, principles, construction and limitations- Delayed time base, Analog storage and Sampling oscilloscopes. Digital storage oscilloscopes-principles, Measurements using CROs and DSOs, Recording instruments: Strip chart recorder, X-Y plotter, LCD displays. Waveform analyzing instruments: Spectrum analyzer, Distortion meter, Watt-hour meter, -meter, Power factor, Instrument transformers, Peak response voltmeter, True RMS meter.	
TOTAL HOURS		

TEXT/REFERENCE BOOKS:

T/R

BOOK TITLE/AUTHORS/PUBLICATION

COURSE HANDOUT: S6

T-1	John P. Bentley, "Principles of Measurement Systems", 3rd Edition, Pearson
	Education,
<i>T-2</i>	S.M. Sze, "Semiconductor sensors", John Wiley & Sons Inc., Singapore, 1994.
<i>T-3</i>	S. Renganathan "Transducer Engineering", Allied publishers Limited, Chennai, 2003.
<i>R-1</i>	Murthy D. V. S, "Transducers and Instrumentation", Prentice Hall, New Delhi, 1995.
<i>R-2</i>	Neubert H.K.P, "Instrument Transducers - An Introduction to their Performance and
	Design", 2nd Edition, Oxford University Press, Cambridge, 1999.
<i>R-3</i>	Patranabis, "Sensors and Transducers", 2nd Edition, Prentice Hall India Pvt. Ltd.,
	2003.
R-4	Waldemar Nawrocki, "Measurement Systems and Sensors", Artech House, 2005.
<i>R-5</i>	Doebelin E.O, "Measurement Systems - Application and Design", 4th Edition,
	McGraw-Hill, New York, 2003.

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
	NIL		

COURSE OBJECTIVES:

1 To give a hands on experience to students in various transducers and instrumentation.

COURSE OUTCOMES:

<i>SI.</i>	DESCRIPTION	Blooms' Taxonomy Level
No.		
С1	Illustrate the working principles of	electronic measuring instruments
С2	Identify various types of errors minimization of the errors	s in measuring systems and choose methods for
СЗ	Summarize the concepts of DC and	d AC bridges used in measurement systems.
<i>C</i> 4	Apply the principles and function systems.	ons of various types of Transducers in measuring
С5	Explain the concepts of CRO, DS instruments.	O, various recording devices and waveform analyzing

CO-PO AND CO-PSO MAPPING:

	P01	<i>P02</i>	<i>P03</i>	P04	P05	<i>P06</i>	P07	P08	<i>P09</i>	P010	P011	P012	<i>PS01</i>	PSO2	PSO3
1	2											1	3		

2	3	2						1	3		
3	3			1				1	3	2	
4	3			1				1	3	2	
5	2							1	3		

JUSTIFICATIONS FOR CO-PO-PSO MAPPING:

MAPPING	LOW/MED	JUSTIFICATION
	IUM/HIGH	
AET206.1-PO1	М	Identifying the errors and formulating method for minimizing the errors
AET206.1-PO12	L	Design and developing calibrated measuring instruments
AET206.2-PO1	Н	Interpretation of data requires measuring systems
AET206.2-PO2	М	Data acquisition requires measuring instruments
AET206.2-PO12	L	Helps in developing instrument systems
AET206.3-PO1	Н	Working principle of transducers required for the design of instrument system
AET206.3-PO5	L	Knowledge of working principle essential for the outcome of lifelong learning
AET206.3-PO12	L	Working principle essential for developing instrument system
AET206.4-PO1	Н	Helpful in changing the industrial scenario
AET206.4-PO5	L	Design and development of solutions requires the knowledge of instruments
AET206.4-PO1	L	Design of instruments required for the synthesis of information
AET206.5-PO1	М	Applicable for technological change
AET206.5-PO12	L	Selection of instruments for the change in industrial scenario
AET206.1-PO1	М	Identifying the errors and formulating method for minimizing the errors
AET206.1-PO12	L	Design and developing calibrated measuring instruments
AET206.1- PSO1	Н	Knowledge of the basic characteristics of the measuring instruments
AET206.2-PSO1	Н	Design and development of calibrated measuring instruments
AET206.3- PSO1	Н	Understanding measuring instruments working for industrial application
AET206.3- PSO2	М	Design and developing instrumentation systems.
AET206.4- PSO1	Н	Design of instruments for data display
AET206.4- PSO2	М	Developing instruments for data recording
AET206.5- PSO1	Н	Analyzing the recorded data for further processing.

GAPS IN THE SYLLABUS

Sl.NO:	DESCRIPTION	PROPOSED	PO Mapping
		ACTIONS	
1	Application of transducers in level	NPTEL, Theory Class	PO1, PO3,PSO1
	measurement. Compensation		
	schemes for thermocouple		

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

SN	DESCRIPTION	PROPOSED	RELEVANCE	RELEVANCE
0		ACTIONS	WITH POs	WITH PSOs
1	Sound transducers	NPTEL, Extra	PO1, PO3,	PSO3

	Lab Classes	

WEB SOURCE REFERENCES:

1	http://nptel.iitm.ac.in
2	http://nptel.ac.in/courses/112103174/3
3	http://www.mfg.mtu.edu/cyberman/machtool/machtool/sensors/intro.html

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

* CHALK & TALK	* STUD. ASSIGNMENT	* WEB RESOURCES	
* LCD/SMART	* STUD. SEMINARS	🗆 ADD-ON	
BOARDS		COURSES	

ASSESSMENT METHODOLOGIES-DIRECT:

* ASSIGNMENTS	* STUD. SEMINARS	* TESTS/MODEL EXAMS	* UNIV. EXAMINATION
☐ STUD. LAB PRACTICES	🗆 STUD. VIVA	☐ MINI/MAJOR PROJECTS	□ CERTIFICATIONS
☐ ADD-ON COURSES	□ OTHERS		

ASSESSMENT METHODOLOGIES-INDIRECT:

* ASSESSMENT OF COURSE OUTCOMES (BY	* STUDENT FEEDBACK ON FACULTY (TWICE)
FEEDBACK, ONCE)	
□ ASSESSMENT OF MINI/MAJOR PROJECTS	□ OTHERS
BY EXT. EXPERTS	

Prepared by	Approved by
Lekshmi M S	
(Faculty)	(HoD)

Sl.No	Module	Planned	Topics
		Date	
No	Date	Module	Planned
1	Day 1	1	Introduction - Measurement system
2	Day 2	1	Qualities of measurement
3	Day 3	1	Qualities of measurement
4	Day 4	1	Principles of loading
5	Day 5	1	Characteristics of measurement
6	Day 6	1	Errors in measurement-instrumental errors, environmental errors
7	Day 7	2	Introduction to indicating instruments
8	Day 8	2	Working of Permanent magnet moving coil
9	Day 9	2	Electrodynamometer
10	Day 10	2	Moving iron instrument
11	Day 11	2	Electrothermal instrument
12	Day 12	2	Hot wire anemometer
13	Day 13	2	Induction type instruments
14	Day 14	2	Class test Module I
15	Day 15	2	Electrostatic type
16	Day 16	3	Introduction to transducers
17	Day 17	3	Characteristics of transducers
18	Day 18	3	Potentiometer, Strain gauge
19	Day 19	3	Strain gauge types
20	Day 20	3	Thermal transducers
21	Day 21	3	Temperature transducers
22	Day 22	3	Objective test on mod 1 and 2
23	Day 23	3	Displacement transducers-Introduction to inductance transducers
24	Day 24	3	Displacement transducers
25	Day 25	3	Capacitive transducers
26	Day 26	3	Capacitive transducers
27	Day 27	3	MCQ On transducers
28	Day 28	3	Photoelectric transducers
29	Day 29	3	Piezoelectric transducers
30	Day 30	3	Hall effect transducers
31	Day 31	3	Accelerometers, Manometers
32	Day 32	4	Bridges-Introduction, types of bridges, Source and detectors of DC bridges
33	Day 33	4	Wheatstone bridge
34	Day 34	4	Carey foster sliding wire bridge
35	Day 35	4	Kelvin bridge and kelvin double bridge
30	Day 30	4	Mouvalla inductance bridges, maxwells especificate bridges
3/	Day 37	4	Andorron bridge Schering bridge
38	Day 38	4	Anderson bridge, Schering bridge
39	Day 39	4	I utorial problems on Bridges

40	Day 40	5	Cathode ray oscilloscopes, principles, construction and limitations- Delayed time base,
41	Day 41	5	Analog storage and Sampling oscilloscopes. Digital storage oscilloscopes- principles
42	Day 42	5	Measurements using CROs and DSOs, Recording instruments: Strip chart recorder,X-Y plotter
43	Day 43	5	LCD displays. Waveform analyzing instruments: Spectrum analyzer, Distortion meter,
44	Day 44	5	Watt-hour meter, Q -meter, Power factor, Instrument transformers Peak response voltmeter, True RMS meter.

ASSIGNMENT QUESTIONS

ASSIGNMENT 1

- 1. Write briefly on Grounding and Shielding in measuring instruments.
- 2. Write briefly on Standards of Measurement System.

ASSIGNMENT 2

1. Explain with block diagram the working principle of CRO

TUTORIAL QUESTIONS

- 1. A Maxwell's inductance–capacitance bridge is used tomeasure a unknown inductive impedance. The bridgeconstants at bridge balance are: Pure resistance arms = $2.5k\Omega$ and 50 k Ω . In between these two resistors, the third armhas a capacitor of value 0.012 μ F in series with a resistor of value 235 k Ω . Find the series equivalent of the unknown impedance.
- 2. The four arms of a bridge are connected as follows:Arm AB: A choke coil L1 with an equivalent series resistance r1Arm BC: A noninductive resistance R3Arm CD: A mica capacitor C4 in series a noninductive resistance R4Arm DA: A noninductive resistance R2When the bridge is supplied from a source of 450 Hz is given between terminals A andC and the detector is connected between nodes B and D, balance is obtained the followingconditions: R2 = 2400 Ω , R3 = 600 Ω , C4 = 0.3 μ F and R4 = 55.4 Ω . Series resistance of the capacitor is 0.5 Ω . Calculate the resistance and inductance of the choke coil.

100908/CO900E : DESIGN & ENGINEERING

COURSE INFORMATION SHEET

PROGRAMME: Applied Electronics and	DEGREE: BTech
Instrumentation	
COURSE: DESIGN ENGINEERING	SEMESTER: S4 CREDITS: 2
COURSE CODE:REGULATION: : 100908/CO900E	COURSE TYPE: Theory
COURSE AREA/DOMAIN: DESIGN AND ANALYSIS	CONTACT HOURS: 2+0+0 (THEORY) hours/Week.
CORRESPONDING LAB COURSE CODE (IF ANY):	LAB COURSE NAME:

SYLLABUS:

UNIT	DETAILS	HOURS
Ι	Design Process:- Introduction to Design and Engineering Design, Defining a	
	Design Process-: Detailing Customer Requirements, Setting Design Objectives,	5
	Identifying Constraints, Establishing Functions, Generating Design Alternatives	
	and Choosing a Design.	
II	Design Thinking Approach:-Introduction to Design Thinking, Iterative Design	
	Thinking Process Stages: Empathize, Define, Ideate, Prototype and Test. Design	8
	Thinking as Divergent-Convergent Questioning. Design Thinking in a Team	
	Environment	
III	Design Communication (Languages of Engineering Design):-Communicating	
	Designs Graphically, Communicating Designs Orally and in Writing.	8
	Mathematical Modeling In Design, Prototyping and Proofing the Design	
IV	Design Engineering Concepts:-Project-based Learning and Problem-based	
	Learning in Design.Modular Design and Life Cycle Design Approaches.	
	Application of Biomimicry, Aesthetics and Ergonomics in Design. Value	6
	Engineering, Concurrent Engineering, and Reverse Engineering in Design.	
V	Expediency, Economics and Environment in Design Engineering:-Design for	
	Production, Use, and Sustainability. Engineering Economics in Design. Design	
	Rights. Ethics in Design	6
	TOTAL HOURS	25

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
Т	YousefHaik, SangarappillaiSivaloganathan, Tamer M. Shahin, Engineering Design
	Process, Cengage Learning 2003, Third Edition, ISBN-10: 9781305253285
Τ	Voland, G., Engineering by Design, Pearson India 2014, Second Edition, ISBN
	9332535051
R	Philip Kosky, Robert Balmer, William Keat, George Wise, Exploring Engineering, Fourth
	Edition: An Introduction to Engineering and Design, Academic Press 2015, 4th Edition,
	ISBN: 9780128012420.
R	Nigel Cross, Design Thinking: Understanding How Designers Think and Work, Berg
	Publishers 2011, First Edition, ISBN: 978-1847886361
R	Pahl, G., Beitz, W., Feldhusen, J., Grote, KH., Engineering Design: A Systematic
	Approach, Springer 2007, Third Edition, ISBN 978-1-84628-319-2
COUI	DEE DEE DEGILICITES, NIL

COURSE PRE-REQUISITES: NIL

COURSE OBJECTIVES:

- To excite the student on creative design and its significance 1
- To make the student aware of the processes involved in design 2
- To get an exposure as to how to engineer a design 3

COURSE OUTCOMES:

SNO	DESCRIPTION
1	Appreciate the different concepts and principles involved in design engineering.
2	Apply design thinking while learning and practicing engineering.
3	Develop innovative, reliable, sustainable and economically viable designs
	incorporating different segments of knowledge in engineering
	Explain how to develop new designs for simple products through value engineering
	Analyze the different designs around you in your daily life and made you to think
	creatively.

MAPPING COURSE OUTCOMES (COs) – PROGRAM OUTCOMES (POs) AND COURSE OUTCOMES (COs) – PROGRAM SPECIFIC OUTCOMES (PSOs)

CO	P0 1	P0 2	P0 3	P0 4	PO 5	P0 6	P0 7	P0 8	P0 9	PO 10	PO 11	P0 12	PSO 1	PS 0 2	PS 03
1	2	1					1			1			1		
2		2				1		1				2			2
3			2			1	1		2	2		1		2	
4	3			1						2				2	
5	2		2						1						3

JUSTIFATIONS FOR CO-PO MAPPING

MAPPING	LOW/M	JUSTIFICATION				
	ED					
	IUM/HI					
	GH					
EST200.1- PO1	M	Understanding of various design problems helps the students in better				
		formation of design objectives and constraints				
EST200.1-PO2	L	Knowledge in design and engineering helps the students in problem analysis				
EST200.1-PO10	L	Identification of need or problems is an important step in the development of				
		solutions				
EST200.2-PO2	М	Design problems related to current environmental and social issues				
EST200.2-PO6	L	Students could identify safety health and cultural issues, evolving concepts to				
		overcome such issues				
EST200.2-PO8	L	Working principle of transducers required for the design of instrument system				
EST200.2-PO12	Н	Helps in applying the design process in life cycle design and sustainability				
		design.				
EST200.3 -PO2	М	Knowledge of working principle essential for the outcome of lifelong learning				
EST200.3-PO6	L	Working principle essential for developing instrument system				
EST200.3-PO7	L	Helpful in changing the industrial scenario				
<i>EST200.3-PO9</i> M 1		Projects can be done by student teams in two levels based on assigned task as				
		lab work.				
EST200.3-PO10	М	Proper communication between individuals and society is essential for				
		effective team works				
EST200.3-PO12	L	Design of instruments required for the synthesis of information				
EST200.3-PO1	Н	Helps in understanding how mathematics can be used for designing				
EST200.3-PO4	L	Knowledge in collecting data for modifying existing design				
EST200.3-PO9	М	Help in understanding how to work in a team				

EST200.3-PO1	М	Knowledge in design and engineering using physics and mathematics for problem analysis
EST200.3-PO3	М	Working in a team for social benefit and society upliftment
EST200.3-PO9	L	Working in a team for developing communication
EST200.1- PSO1	L	Understanding the design process for a particular application.
EST200.2-PSO3	М	Developing and designing new instrumentation systems
EST200.3- PSO2	М	Design thinking process demands learning new concepts.
EST200.4- PSO2	М	Designing new products from existing one creatively.
EST200.5- PSO3	Н	Developing new designs by working in a eam

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

SNO	DESCRIPTION	Proposed Action	RELEVANCE WITH POs	RELEVANCE WITH PSOs
1	Strategies adopted for extended life	Discuss in class	PO7	PSO1,2

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/INDUSTRY VISIT/GUEST LECTURER/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

SNO	DESCRIPTION	Proposed Action	RELEVANCE WITH POs	RELEVANCE WITH PSOs
1	Requirements of multidisciplinary team	Discussion in class	PO9	PSO1
THIER (

WEB SOURCE REFERENCES:

1	E-Book: http://opim.wharton.upenn.edu/~ulrich/designbook.html
2	http://www2.warwick.ac.uk/fac/sci/wmg/ftmsc/modules/modulelist/peuss/designforx/design_for_x_notes
DELI	VERY/INSTRUCTIONAL METHODOLOGIES:

🗹 CHALK & TALK	🗹 STUD. ASSIGNMENT	WEB RESOURCES				
LCD/SMART BOARDS	□ STUD. SEMINARS	□ ADD-ON COURSES				

ASSESSMENT METHODOLOGIES-DIRECT

₽ ASSIGNMENTS	☐ STUD. SEMINARS	ØTESTS/MODEL EXAMS	☑ UNIV. EXAMINATION
🖾 STUD. LAB	🗆 STUD. VIVA	🗆 MINI/MAJOR	□ CERTIFICATIONS
PRACTICES		PROJECTS	
\Box ADD-ON COURSES			

ASSESSMENT METHODOLOGIES-INDIRECT

ASSESSMENT OF COURSE OUTCOMES (BY	STUDENT FEEDBACK ON FACULTY (ONCE)
FEEDBACK, ONCE)	
□ ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT.	□ OTHERS
EXPERTS	
Prepared by	Approved by
Ms. Lekshmi M S	Dr. Hari CV
	(HOD)

COURSE PLAN

SI.No	Module	Planned
1	1	Introduction to Design and Engineering Design.
2	1	Defining a Design Process-: Detailing Customer
2		Defining a Design Process + Sotting Design
5	1	Defining a Design Process-: Setting Design
		Functions.
4	1	Defining a Design Process-: Generating Design
	-	Alternatives and Choosing a Design.
5	1	Case Studies:- Stages of Design Process.
6	2	Introduction to Design Thinking
7	2	Iterative Design Thinking Process Stages:
		Empathize, Define, Ideate, Prototype and Test.
8	2	Design Thinking as Divergent-Convergent
		Questioning
9	2	Design Thinking in a Team Environment
10	2	Case Studies: Design Thinking Approach.
11	3	Communicating Designs Graphically.
12	3	Communicating Designs Orally and in Writing.
13	3	Communicating Designs Orally and in Writing.

ASSIGNMENT QUESTIONS

Assignment 1

Show the designing of a TV remote control going through the various stages of the design process. Use hand sketches to illustrate the processes.

Assignment 2

Describe the difference between a prototype, a model, and a proof of concept. Suppose you are designing a portable electric guitar, at which stages in the design would you want to use a proof of concept, a model, and a prototype?

Assignment 3

Write a value addition to the following:-Laser printer A Ladder A Jacket for winter

Page 65

100908/ES400F: CONSTITUTION OF INDIA

COURSE INFORMATION SHEET

PROGRAMME: Applied Electronics and		DEGREE: B.TECH						
Instrumentation								
COURS	SE: Constitution of India	SEMESTER: 4 CREDITS: 3						
COURS	SE CODE: 100908/ES400F REGULATION:	COURSE TYPE: CORE						
	SE AREA /DOMAIN+ HUMANITICS	CONTACT HOURS: 2-0-0						
CORRE	ESPONDING LAB COURSE CODE (IF ANY): NIL	LAB COURSE NAME: NA						
SYLLABUS:								
UNIT	DETAILS							
Ι	Historical Background, Salient feature	es of the Constitution.						
	Preamble of the Constitution							
	Union and its Territory.							
	Meaning of citizenship, Types, Termin	nation of Citizenship						
II	II • Definition of State							
	Fundamental Rights, General Nature,	• Fundamental Rights, General Nature, Classification, Right to Equality,						
	Right to Freedom, Right Against Exploitation, Right to Freedom of							
	Religion, Cultural and Educational Rig	Religion, Cultural and Educational Rights, Right to Constitutional						
	Remedies. Protection in Respect of Conviction for Offences.							
	Directive Principles of State Policy. Classification of Directives							
	Eundamental Duties							
III	The Union Executive, The President,	The Vice President, The Council of						
	Ministers, The Prime Minister, Attorn	ney-General, Functions.						
	The Parliament, Composition, Rajya S	Sabha, Lok Sabha, Qualification and						
	Disgualification of Membership, Fund	Disgualification of Membership, Functions Of Parliament.						
	Union Judiciary, The Supreme Court,	Union Judiciary. The Supreme Court, Jurisdiction, Appeal by Special						
IV	The State Executive The Governor T	The Council of Ministers. The Chief						
11	Minister Advessts Constal	The council of Ministers, The Chief						
	ivinister, Advocate General							
	Union Territories.							
	The State Legislature, Composition, Qualification and Disqualification of							

	Membership, Functions.
	• The State Judiciary, The High Court, Jurisdiction, Writs Jurisdiction.
V	Relations between the Union and the States, Legislative Relation,
	Administrative Relation, Financial Relations, Inter State council, Finance
	Commission.
	 Emergency Provision, Freedom of Trade Commerce and Inter course,
	Comptroller and Auditor General of India, Public Services, Public Service
	Commission, Administrative Tribunals.

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
R1	Ministry of law and justice, The constitution of India, Govt. of India, New Delhi
R2	J N Pandey, The constitutional law of India, Central Law agency, Allahabad
R3	M V Pylee, India's Constitution, S Chand and company, New Delhi

COURSE OBJECTIVES:

1	To familiarize the prospective engineers with elementary Principles of Economics
	and
	Business Economics.
2	To acquaint the students with tools and techniques that are useful in their profession in
	Business Decision Making which will enhance their employability;
3	To apply business analysis to the "firm" under different market conditions;
4	To apply economic models to examine current economic scenario and evaluate policy
	options for addressing economic issues
5	To gain understanding of some Macroeconomic concepts to improve their ability to
	understand the business climate;
6	To prepare and analyse various business tools like balance sheet, cost benefit analysis
	and rate of returns at an elementary level

COURSE OUTCOMES:

SLNO	DESCRIPTION
1	Explain the background of the present constitution of India and features
2	Utilize the fundamental rights and duties
3	Understand the working of the union executive, parliament and judiciary
4	Understand the working of the state executive, legislature and judiciary
	Utilize the special provisions and statutory institutions

5 Show national and patriotic spirit as responsible citizens of the country			

MAPPING OF COURSE OUTCOME AND PROGRAMME OUTCOME CO-PO MAPPING

СО	P01	<i>P02</i>	<i>P03</i>	<i>P04</i>	<i>P05</i>	P06	P07	<i>P08</i>	<i>P09</i>	<i>P010</i>	<i>P011</i>	P012
РО												
<i>CO1</i>						2	2	2		2		
<i>CO2</i>						3	3	3		2		
СОЗ						3	2	3		2		
<i>CO4</i>						3	2	3		2		
<i>CO5</i>						3	2	3		2		
CO 6						3	3	3		3		

Attainment Pattern

Learning	Continuous Internal Evaluation (CIE)							
Objectives	Internal Examination I	End Semester						
	(50)	(50)	Examination (ESE)					
			(100)					
Remember	20	20	40					
Understand	20	20	40					
Apply	10	10	20					

LIVERY/INSTRUCTIONAL METHODOLOGIES:

🗆 CHALK & TALK	☐ STUD. ASSIGNMENT 2	UWEB RESOURCES	□LCD/SMART BOARDS
☐ STUD. SEMINARS	□ ADD-ON COURSES	□ ICT ENABLED	
		CLASSES	

ASSESSMENT METHODOLOGIES-DIRECT

□ ASSIGNMENTS	STUD. SEMINARS	TESTS/MODEL	🗆 UNIV.
		EXAMS	EXAMINATION
STUD. LAB	🗆 STUD. VIVA	☐ MINI/MAJOR	□ CERTIFICATIONS
PRACTICES		PROJECTS	
□ ADD-ON	□ OTHERS	□ GROUP	
COURSES		DISCUSSION(IV)	

ASSESSMENT METHODOLOGIES-INDIRECT

□ ASSESSMENT OF COURSE OUTCOMES (BY FEEDBACK, ONCE)	☐ STUDENT FEEDBACK ON FACULTY (TWICE)
☐ ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT. EXPERTS	□ OTHERS

Prepared by Ms. LekshmiVijayakumar

(Faculty DBSH)

Approved by (Head of the Department)

		GENERAL COURSE PLAN FOR SEMESTER IV SUBJECT: CONSTITUTION OF INDIA
D. ALIC	MODIUR	
DAYS	MODULE	GENERAL COURSE PLAN
DAY 1		Definition of constitution, salient features of the constitution.
DAY 2	1	Historical back ground
DAY 3	I	Preamble of the constitution, union and its territory.
DAY 4	<u>I</u>	Meaning of citizenship, types, termination of citizenship.
DAY 5	II	Definition of state, fundamental rights, general nature, classification.
DAY 6	II	Right to equality, right to freedom , right against exploitation
DAY 7	II	Right to freedom of religion, cultural and educational rights, right to constitutional remedies
DAY 8	II	Protection in respect of conviction for offences.
DAY 9	II	Directive principles of state policy, classification of directives, Fundamental duties
DAY 10	III	The Union executive, the President, the vice President, the council of ministers
DAY 11	III	The Prime minister, Attorney-General, functions.
DAY 12	III	The parliament, composition, Rajyasabha, Loksabha
DAY 13	III	Qualification and disqualification of membership, functions of parliament.
DAY 14	III	Union judiciary, the supreme court, jurisdiction, appeal by special leave
DAY 15	IV	The State executive, the Governor, the council of ministers
DAY 16	IV	The Chief minister, advocate general, union Territories
DAY 17	IV	The State Legislature, composition, qualification and disqualification of membership, functions.
DAY 18	IV	The state judiciary, the high court, jurisdiction, writs jurisdiction.
DAY 19	V	Relations between the Union and the States
DAY 20	V	Union and States - legislative relation, administrative relation
DAY 21	V	Union and States -, financial Relations, Inter State council, finance commission.
DAY 22	V	Emergency provision, freedom of trade commerce and inter course
DAY 23	V	Auditor general of India, public Services, public service commission, administrative Tribunals.
DAY 24	V	Official language
DAY 25	V	Elections
DAY 26	V	Special provisions relating to certain classes
DAY 27	V	Amendment of the Constitution
DAY 28	V	Amendment of the Constitution

ASSIGNMENT I

- 1. Federal Constitutions as a rule are rigid as most of them have extremely difficult and even complicated procedures of amendment. It should be understood that a constitution being a dynamic document should grow with a growing nation and should suit the changing needs and circumstances of a growing and changing people. Amending a federal constitution of many countries is the most difficult process in contrast, the Constitution of India presents a must simpler picture.
- Prepare a write upon on Constitutional amendments made in India.
- MODE: Online, Upload Scanned copy of the assignment (Use A4 Sheet)

Content Clarity	Presentation Style	Depth of the Topic Covered	Timely Submission
4	2	3	1

Rubric: 10 Marks

ASSIGNMENT II

- What were the situations to declare National Emergencies in India? Elucidate with case study.
- National Emergency (1975-77) was regarded as the darkest hours of Indian Democracy. Why?
- MODE: Online Upload Scanned copy of the assignment (Use A4 Sheet)
- Rubric: 5 Marks.

Content Clarity	Presentation Style	Interpretation by the student	Timely submission
2	0.5	1.5	1

100902/EC422S: ANALOG CIRCUITS AND SIMULATION LAB
COURSE INFORMATION SHEET

PROGRAMME: APPLIED ELECTRONICS &	DEGREE: BTECH
INSTRUMENTATION	UNIVERSITY: APJ ABDUL KALAM
	TECHNOLOGICAL UNIVERSITY
COURSE: Analog Circuits and Simulation	SEMESTER: 4 CREDITS: 2
Lab	
<i>COURSE CODE: 100902/EC422S</i>	COURSE TYPE: CORE
REGULATION: 2019	
COURSE AREA/DOMAIN:	CONTACT HOURS: 3 Practical Hours/Week.
ELECTRONICS CIRCUITS	
CORRESPONDING THEORY COURSE CODE	THEORY COURSE NAME: ANALOG
(IF ANY): 100902/EC400B:	CIRCUITS

SYLLABUS:

UNIT	DETAILS								
	PART A								
1	RC integrating and differentiating circuits (Transient analysis with different inputs and frequency response)	3							
2	Clipping and clamping circuits (Transients and transfer characteristics)	3							
3	RC Coupled CE amplifier - frequency response characteristics.	3							
4	MOSFET amplifier (CS) - frequency response characteristics.	3							
5	Cascade amplifier – gain and frequency response	3							
6	Cascode amplifier – frequency response	3							
7	Feedback amplifiers (current series, voltage series) - gain and frequency response	3							
8	Low frequency oscillators – RC phase shift, Wien bridge	3							
9	Power amplifiers (transformer less), Class B and Class AB.								
10	Transistor series voltage regulator (load and line regulation)	3							
	PART B								
1	RC integrating and differentiating circuits (Transient analysis with different inputs and frequency response)	3							
2	Clipping and clamping circuits (Transients and transfer characteristics)	3							
3	RC Coupled CE amplifier - frequency response characteristics.	3							
4	MOSFET amplifier (CS) - frequency response characteristics.	3							
5	Cascade amplifier – gain and frequency response	3							
6	Cascode amplifier – frequency response	3							
7	Feedback amplifiers (current series, voltage series) - gain and frequency response	3							
8	Low frequency oscillators – RC phase shift, Wien bridge	3							
9	Power amplifiers (transformer less), Class B and Class AB.	9							

10	Transistor series voltage regulator (load and line regulation)	10

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
R	Microelectronic Circuits / Sedra and Smith /OUP
R	Pulse, Digital and Switching Waveforms / Millman and Taub / McGraw Hill
R	Electronic Circuits – Analysis and Design / Neamen D. / TMH
R	Microelectronic Circuits – Analysis and Design / Rashid M. H. / Cengage Learning
R	Introduction to Electronic Circuit Design / Spencer R.R. and M. S. Ghausi / Pearson
R	Fundamentals of Microelectronics / Razavi B. / Wiley
R	Electronics Lab Manual Vol. 1 / K. A. Navas /

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
EST	Basics of Electrical and Electronics	Students should know about basic	EST
130	Engineering	electronics components like BJT,	130
		diode, Resistor etc&its working	
ESL	Electrical and Electronics	Students should familiar with	ESL
130	Workshop	breadboard and electronic	130
		components	

COURSE OBJECTIVES:

- 1 To familiarize students with the Analog Circuits Design through the mplementation of basic Analog Circuits using discrete components.
- **2** To familiarize students with simulation of basic Analog Circuits.

COURSE OUTCOMES:

SNO	DESCRIPTION	Bloom Taxonomy
		Level
<i>C0.1</i>	Students will be able to <u>design</u> and <u>demonstrate</u> the functioning of basic analog circuits using discrete components.	Understand and analyze (level 2 ,4)
<i>C0.2</i>	Students will be able to <u>design</u> and <u>simulate</u> the functioning of basic analog circuits using simulation tools.	Understand and apply (level 2 ,3)
СО.З	Students will be able to function effectively as an individual and in a team to accomplish the given task.	Understand (level 2)

CO – PO mapping

PO	PSO	PSO	PSO											
1	2	3	4	5	6	7	8	9	10	11	12	1	2	3

C01	3	3	3	-	-	-	-	-	2	-	-	2	2	-	-
CO2	3	3	3	-	3	-	-	-	2	-	-	2	2	3	-
CO3	3	3	3	-		-	-	-	3	-	-	3	-	-	3

CO-PO mapping justification

MAPPING	LOW/ MEDIUM	JUSTIFICATION
	/HIGH	
СО1-РО1	Н	Apply the knowledge of mathematics, science and engineering fundamentals to understand the concepts of basic analog circuits using discrete components.
С01-Р02	Н	Problem analysis of basic analog circuits
С01-РОЗ	Н	Design of basic analog circuits using discrete components.
СО1-РО9	М	Function effectively as an individual and in a team to accomplish the given task.
C01-P012	М	The students will be able to design advanced analog circuits in the broadest context of technological change
СО2-РО1	Н	Apply the knowledge of mathematics, science and engineering fundamentals to understand the concepts of basic analog circuits using simulation tools.
СО2-РО2	Н	Basic analog circuit design and simulation using simulation tools helps in analyzing circuits for complex Engineering problems
СО2-РОЗ	Н	Basic analog circuit design and simulation using simulation tools helps in designing solutions for complex Engineering problems
СО2-РО5	Н	The usage of simulation tools for basic analog circuit design and simulation helps in using latest advanced tools for complex Engineering activities
СО2-РО9	М	Conduct of experiments using simulation tools in teams helps to function effectively as an individual and as a member or leader in diverse teams
СО2-РО12	М	The students will be able to understand and use the latest tools developed in the broadest context of technological change
СОЗ-РО1	Н	Basic knowledge and understanding of the analog circuit design and simulation helps in functioning effectively as an individual and a team member.
СОЗ-РО2	Н	Contributions as an individual and a team member helps in the analyzes of complex Engineering problems
СОЗ-РОЗ	Н	Contributions as an individual and a team member helps in

		designing solutions for complex Engineering problems
СОЗ-РО9	Н	Conduct of experiments in teams helps to function effectively as an individual and as a member or leader in diverse teams
СОЗ-РО12	Н	Individual and team member skills helps in the life long learning of project management.
CO1-PSO1	М	Demonstrate their skills in designing, implementing and testing analogue electronic circuits
CO2-PSO1	М	Demonstrate their skills in designing, implementing and testing analogue electronic circuits using simulation tools
CO2-PSO2	Н	Students could simulate,design and implement analog circuits in this laboratory and helps to understand the usage of EDA tools

GAPES IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

SNO	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POs	RELEVANCE WITH PSOs
1	Rectifiers with L, LC, π filters – waveforms, ripple factors.	Included as an additional experiment	P01,P02,P03	PSO1

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/INDUSTRY VISIT/GUEST LECTURER/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

WEB SOURCE REFERENCES:

1	www.nptel.iit.a.c.in
2	https://kicad.org/
3	http://qucs.github.io/
4	https://www.ti.com/tool/TINA-TI

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

AHALK & TALK 🛛	TUD. ASSIGNMENT	WEB RESOURCES	□LCD/SMART
			BOARDS
STUD. SEMINARS	□ ADD-ON COURSES	ONLINE CLASSES	

ASSESSMENT METHODOLOGIES-DIRECT

<i>□ ASSIGNMENTS</i>	STUD. SEMINARS	TESTS/MODEL	🗆 UNIV.
		EXAMS 🛛	EXAMINATION

STUD. LAB	🗆 STUD. VIVA	□ MINI/MAJOR	□ CERTIFICATIONS
PRACTICES 🛛		PROJECTS	
□ ADD-ON	□ OTHERS		
COURSES			

ASSESSMENT METHODOLOGIES-INDIRECT

ASSESSMENT OF COURSE OUTCOMES (BY	STUDENT FEEDBACK ON FACULTY
FEEDBACK, ONCE) 🛛	(TWICE) 🛛
□ ASSESSMENT OF MINI/MAJOR PROJECTS	□ OTHERS
BY EXT. EXPERTS	

Prepared by	Approved by
Dr. Poornima S.	
	Ms. Liza Annie Joseph
(Course in charge)	(HOD)

Sl.No.	Planned
1	RC integrating and differentiating circuits (Transient analysis with different inputs and frequency response)- Simulation
2	Clipping and clamping circuits (Transients and transfer characteristics) - Simulation
3	RC Coupled CE amplifier - frequency response characteristics Simulation
4	MOSFET amplifier (CS) - frequency response characteristics Simulation
5	Cascade amplifier – gain and frequency response- Simulation
6	Cascode amplifier – frequency response- Simulation
7	Feedback amplifiers (current series, voltage series) - gain and frequency response- Simulation
8	Low frequency oscillators – RC phase shift, Wien bridge- Simulation
9	Power amplifiers (transformer less), Class B and Class AB Simulation
10	Transistor series voltage regulator (load and line regulation)- Simulation
11	RC integrating and differentiating circuits (Transient analysis with different inputs and frequency response) - using discrete components
12	Clipping and clamping circuits (Transients and transfer characteristics)
13	RC Coupled CE amplifier - frequency response characteristics using discrete components
14	MOSFET amplifier (CS) - frequency response characteristics using discrete components
15	Cascade amplifier – gain and frequency response- using discrete components
16	Cascode amplifier – frequency response- using discrete components
17	Feedback amplifiers (current series, voltage series) - gain and frequency response- using discrete components
18	Low frequency oscillators – RC phase shift, Wien bridge- using discrete components
19	Power amplifiers (transformer less), Class B and Class AB using discrete components
20	Transistor series voltage regulator (load and line regulation)- using discrete components

COURSE PLAN

Experiment Questions(PART A & PART B)

- To design and set up various clipping and clamping circuits using diodes and to plot their output waveforms & transfer characteristics. Design the following clipping and clamping circuits and plot the necessary waveforms, given a 10Vpp, 1kHz sine wave input. CLIPPING CIRCUITS:
 - i) positive shunt clipper
 - ii) negative shunt clipper
 - iii) positive shunt clipper with positive bias of 2V
 - iv) negative shunt clipper with negative bias of 2V
 - v) slicer (positive clipper at 4V and negative clipper at -3V)
 - vi) positive series clipper
 - vii) negative series clipper
 - viii) positive series clipper with positive bias of 2V
 - ix) negative series clipper with negative bias of 2V
 - CLAMPING CRCUITS:
 - x) unbiased positive clamper
 - xi) unbiased negative clamper
 - xii) positive clamper with a bias of 5V
 - xiii) negative clamper with a bias of -5V
- 2. a) Plot the frequency response of RC Low pass and high pass circuits (given cut off frequency =1KHz).

b) Plot the output waveform of RC Low pass circuit with a 10Vpp square wave input and determine rise time for different time constants.

i) R C >>T ii) RC = T iii) RC <<T

c) Plot the output waveform of RC High pass circuit with a 10Vpp square wave input and determine the percentage tilt for different time constants. i) RC>>T ii) RC = T iii) RC<<T.

d) Plot the output waveforms of RC Differentiator and Integrator for sinusoidal, square wave and pulse inputs.

- 3. To design and set up an RC Coupled amplifier using BJT for a gain of 100 and find its 3dB bandwidth from the frequency response characteristics curve. (Given Vcc = $12V \& Ic = 1mA \& \beta = 100$)
- 4. To design and set up:
 - a. Zener regulator with and without emitter follower.
 - b. To plot load regulation and line regulation graphs.

100002/AE422T: TRANSDUCERS AND MEASUREMENTS LAB

COURSE INFORMATION SHEET

PROGRAMME: APPLIED ELECTRONICS & INSTRUMENTATION	DEGREE: B.TECH
COURSE: TRANSDUCERS AND MEASUREMENTS LAB	SEMESTER: 4 CREDITS: 2
COURSE CODE: 100002/AE422T	COURSE TYPE: CORE
REGULATION: 2019	
COURSE AREA/DOMAIN:	CONTACT HOURS: 0+0+3 (LAB) hours/
INSTRUMENTATION	Week.
CORRESPONDING THEORY COURSE	THEORY COURSE NAME: AE 204
CODE (IF ANY):	SENSORS AND TRANSDUCERS

SYLLABUS:

Sl.	DETAILS	HOUR
NO:		S
	Part A (At least 8 experiments are mandatory)	
1	1. Determination of characteristics optical transducers using LDR	8*3
	2. Determination of characteristics of LVDT	
	3. Measurement of strain and load using strain gauge	
	4. Level measurement using capacitive/resistive transducer	
	5. Determination of characteristics of RTD	
	6. Determination of characteristics of thermocouple	
	7. Determination of characteristics of thermistor	
	8. Determination of pressure using strain gauge/piezoelectric	
	9 Determination of sound pressure level using sound level meter	
	10 Calibration of pressure gauge using dead weight tester	
	11 Measurement of speed using photoelectric nickun	
	12. Measurement of speed using stroboscope	
	13. Determination of characteristics of hall effect transducer	
	14. Measurement of displacement using inductive transducer	
	15. Determination of characteristics of capacitive displacement	
	transducer	
	16. Pressure measurement using U-tube manometer	
	17. Study of loading effect in potentiometer	
	18. Measurement of frequency and phase using Lissajous figures	
	Part B (At least 4 experiments are mandatory)	
2	19. Measurement of temperature	4*3
	20. Measurement of level in water tank	
	21. Measurement of pressure	
	22. Wind velocity measurement	
	23. Measurement of humidity	
	24. Simulation of Wheatstone bridge using LabVIEW	

 25. Simulation of Anderson's bridge using LabVIEW 26. Simulation of Maxwell's inductance bridge and Maxwell's inductance capacitance bridge using LabVIEW 	
TOTAL HOURS	54

TEXT/REFERENCE BOOKS:

-

1	John P. Bentley, "Principles of Measurement Systems", 3rd Edition, Pearson Education.
2	S.M. Sze. "Semiconductor sensors". John Wiley & Sons Inc., Singapore, 1994.
_	
3	S. Renganathan "Transducer Engineering", Allied publishers Limited, Chennai, 2003
4	Murthy D. V. S, "Transducers and Instrumentation", Prentice Hall, New Delhi, 1995.
5	Patranabis, "Sensors and Transducers", 2nd Edition, Prentice Hall India Pvt.
	Ltd., 2003. Neubert H.K.P, "Instrument Transducers - An Introduction to their
	Performance and Design", 2nd Edition, Oxford University Press, Cambridge,
	1999.

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SE M
	NIL		

COURSE OBJECTIVES:

1	Familiarize the students with various types of sensors and transducers
2	Enable students to select and design suitable instruments to meet requirements of various industrial applications

COURSE OUTCOMES:

Sl.	DESCRIPTION	Blooms' Taxonomy
No.		Level
1	Graduates will be able make use of basic transducers for the	Apply(level 3)

	measurement of physical variables like pressure, temperature etc.	
2	Graduates will be able to analyze with various measuring	Analyze (level 4)
	instruments and bridges	
3	Graduates will be able to create sensor based measurement	Create (level 6)
	systems using modern tools	

CO-PO AND CO-PSO MAPPING

/	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
											_	_			
СО.1	2	-	2	1	-	-	-	-	2	1	-	1	-	-	1
СО.2	2	-	2	1	-	-	-	-	2	1	-	2	2	2	-
СО.З	2	-	2	1	2	2	-	-	2	1	2	3	-	2	2

JUSTIFICATIONS FOR CO-PO-PSO MAPPING:

MAPPING	LOW/MEDIUM	JUSTIFICATION
	/HIGH	
СО.1-РО1	M	The concept of multidisciplinary approach is understood.
СО.1-РОЗ	М	Concepts are defined and learned.
<i>CO.1- PO4</i>	L	Can extend the basic concepts learnt to build better systems
СО.1-РО9	М	Various fundamental key elements are described.
СО.1-РО10	L	Understands the work of different elements in combination
СО.1-РО12	L	Instrument developing methods are focused
CO.1-PSO3	L	A new concept that suits the changing industrial scenario is being
		implemented.
СО.2-РО1	М	Different concepts are being analyzed to produce engineering
		solutions.
СО.2 -РОЗ	М	Studying/practicing the concepts helps to develop solutions for
		different systems.
СО.2 -РО4	L	Analyzing skill is improved.
СО.2 -РО9	М	Can engage in lifelong learning with ability to communicate
		effectively in a team.
СО.2 -РО10	L	Measurement and documentation practices will be helpful in real
		time activities.
СО.2 -РО12	М	Different systems are analyzed.
CO.2-PSO1	М	Understanding different types of transducer, solutions for its
		development are identified
<i>CO.2 – PSO2</i>	М	Circuit analysis to find suitable solutions for its design can be
		effected.

СО.3 -РО1	М	Knowledge of engineering fundamentals in design aspect is well understood.
СО.3 –РОЗ	М	Knowledge of traditional approach helps to solve complex engineering problems.
СО.3 -РО4	L	Complex engineering solutions can be designed.
СО.3 –РО5	М	Interpretations of the systems can be done with the acquired knowledge.
СО.3 -РОб	М	Sensor based modern tools can be developed for the betterment of the society
СО.3 -РО9	М	Team work in different activities will enable greater effectiveness in bigger projects
СО.3 -РО10	L	Team work also supports effective reports and design documentation
СО.3 -РО11	М	Sensor based systems supports multidisciplinary activities
СО.3 -РО12	Н	Basic knowledge in the systems strengthens lifelong learning
CO.3 -PSO2	М	The student can be effective in contributing to development of standard systems
CO.3 –PSO3	М	The student can confidently contribute to changing industrial conditions

GAPES IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

Sl. No.	Description	Proposed Actions	Relevance with POs	Relevance with PSOs
1	Capacitive Microphone:	Web reference [3]	1,2,3,4	3

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/INDUSTRY VISIT/GUEST LECTURER/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

Sl.	Description	Proposed	Relevance	Relevance
No.		Actions	with POs	with PSOs
1	Level measurement using capacitive/resistive transducer	Extra Lab Classes	1,2,3,4	3
2	Measurement of speed			

using photoelectric pickup		

WEB SOURCE REFERENCES:

1	http://nptel.iitm.ac.in
2	http://nptel.ac.in/courses/112103174/3
3	http://www.mfg.mtu.edu/cyberman/machtool/machtool/sensors/intro.html

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

🗖 CHALK & TALK	STUD .	WEB RESOURCES	
	ASSIGNMENT		
□LCD/SMART	STUD. SEMINARS	🗆 ADD-ON	
BOARDS		COURSES	

ASSESSMENT METHODOLOGIES-DIRECT

☐ ASSIGNMENTS	STUD. SEMINARS	TESTS/MODEL	□ UNIV.
'		EXAMS 🛛	EXAMINATION
STUD. LAB	🗆 STUD. VIVA	□ MINI/MAJOR	□ CERTIFICATIONS
PRACTICES 🛛		PROJECTS	
□ ADD-ON	□ OTHERS		
COURSES			

ASSESSMENT METHODOLOGIES-INDIRECT

ASSESSMENT OF COURSE OUTCOMES (BY	STUDENT FEEDBACK ON FACULTY
FEEDBACK, ONCE)	(TWICE) 2
□ ASSESSMENT OF MINI/MAJOR PROJECTS	□ OTHERS
BY EXT. EXPERTS	

Prepared by	Approved by
Mary Hexy.	
(Course in charge)	(HOD

<u>Lab Cycle</u>

<u>Cycle 1</u>

- 1. CHARACTERISTICS OF LVDT
- 2. MEASUREMENT OF STRAIN AND LOAD USING STRAIN GAUGE
- 3. CHARACTERISTICS OF CAPACITIVE DISPLACEMENT TRANSDUCER
- 4. CHARACTERISTICS OF THERMOCOUPLE
- 5. CHARACTERISTICS OF RTD
- 6. PRESSURE MEASUREMENT USING U- TUBE MANOMETER
- 7. CALIBRATION OF PRESSURE GAUGE USING DEAD WEIGHT TESTER
- 8. CHARACTERISTICS OPTICAL TRANSDUCERS USING LDR

<u>Cycle 2</u>

- 1. MEASUREMENT OF TEMPERATURE USING LabVIEW-ARDUINO INTERFACE
- 2. MEASUREMENT OF LEVEL USING LabVIEW- ARDUINO INTERFACE
- 3. SIMULATION OF WHEATSTONE BRIDGE USING LabVIEW
- 4. SIMULATION OF ANDERSON'S BRIDGE USING LabVIEW

Open/Viva Questions

- 1. What is a transducer?
- 2. What is the principle of operation of LVDT?
- 3. Why LVDT is called Linear Variable Differential Transformer?
- 4. What are the physical variables that can be measured by LVDT?
- 5. What is the significance of residual voltage in an LVDT?
- 6. What is sensitivity of a transducer?
- 7. What are active and passive transducers? Give examples
- 8. What is a strain gauge?
- 9. What is the principle of operation of a strain gauge?
- 10. Mention the different types of strain gauges available for various applications.
- 11. What are the physical variables that can be measured with a strain gauge?
- 12. What is the output of a strain gauge?
- 13. What is the unit of strain?
- 14. What is a capacitive transducer?
- 15. How is the capacitance of a capacitive transducer expressed?
- 16. What are the variables measured with capacitive transducers?
- 17. What is a variable capacitor?
- 18. Mention a few applications of variable capacitors
- 19. What is a temperature sensor? Give examples
- 20. What is a thermocouple?
- 21. What is the principle of operation of a thermocouple?
- 22. What is a 'Cold' junction in a thermocouple?
- 23. What are the standards of representing a thermocouple?
- 24. What are the types of thermocouple?
- 25. Give examples of alloy combination for the thermocouple construction.

- 26. What is a Resistance Temperature detector?
- 27. What is the basic material used in the construction of RTD?
- 28. What is the function of a RTD?
- 29. What is the difference between a thermistor and RTD?
- 30. What are the differences between 2, 3, or 4 wire configurations?
- 31. What does Pt 500 represent?

32. What is a manometer?

- 33. What is it used for?
- 34. Define the terms atmospheric pressure, absolute pressure, differential pressure, gauge pressure.
- 35. Mention the units of pressure.
- 36. What are the other devices with which pressure can be measured?
- 37. What is calibration?
- 38. What is the need for calibrating an equipment?
- 39. What is a dead weight tester?
- 40. What are the parameters that can be measured with a dead weight tester?
- 41. What is 'dead weight' in a dead weight tester?
- 42. What are the applications of a dead weight tester?
- 43. What is a Light Dependent Resistor?
- 44. How does it operate?
- 45. What are the materials commonly used in LDRs?
- 46. What is dark resistance of the LDR?
- **47.** What are the applications of LDR?

100002-AE401H: INSTRUMENTATION SYSTEM DESIGN

COURSE INFORMATION SHEET

PROGRAMME: APPLIED ELECTRONICS AND INSTRUMENTATION	DEGREE: B.TECH UNIVERSITY: APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY				
COURSE: INSTRUMENTATION SYSTEM DESIGN	SEMESTER: S4 CREDITS: 4				
COURSE CODE: AET 292 REGULATION: 2019	COURSE TYPE: CORE				
COURSE AREA/DOMAIN: INSTRUMENTATION SYSTEM DESIGN	CONTACT HOURS: 4 hours/week				
CORRESPONDING LAB COURSE CODE (IF ANY): NIL	LAB COURSE NAME:				

SYLLABUS:

No.	Topic	No. of			
		Lectures			
1	Concepts of instrument design	9			
1.1	functional requirements and specifications	3			
1.2	Standards –military, industrial, and commercial standards	3			
1.3	BIS standards, ANSI standards, NEMA standards, DIN standards.				
	Instruments symbols and signals				
2	Performance characteristics and selection criteria	9			
2.1	Performance characteristics and selection criteria for flow, pressure and	3			
	level transducers				
2.2	Smart transmitters	3			
2.3	display devices and plotting devices	3			
3	Calibration and testing standards	9			
3.1	Calibration and testing standards for instruments transducers and	3			
	display devices				
3.2	Measurement and performance tests	4			
3.3	Design of instrumentation amplifier, isolation amplifier, active	2			
4	Control panel design	9			
4.1	Operating console and control room panel design	2			
4.2	Control of room environment for electronic equipment 1	1			
4.3	Heat dissipation, forced air circulation and humidity considerations.	3			
	Grounding and shielding. Protection against electrostatic discharge.				
	Electromagnetic interference and compatibility				
4.4	Design guidelines for PCB s: layout schemes, PCB sizes design rules	3			

	digital, analog, single and multilayer PCB s. automated PCB design,	
	CAD packages and tools.	
5	Principles and design of controllers	9
5.1	Proportional controllers, Proportional Integral, controllers and their	2
	characteristics	
5.2	Proportional Integral Derivative controllers and their characteristics	1
	1APPLIED ELECTRONICS & INSTRUMENTATION	
5.3	Microprocessor based control.	1
5.4	Control valves –applications, design and control	1
5.5	principles of MTTR, MTBF	1
5.6	Failure rate analysis, Product quality variance report 1	1
5.7	Control charts, SQC, TQM Principles.	1
5.8	Quality standards procedure, Certification, Quality audit	1

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
<i>T1</i>	Bela G Lipton Process Control, instrument engineers handbook 3 rd Edition Elsevier 1995
<i>T2</i>	D.Patranabis, Sensors and Transducers, PHI 2nd edition 2003
<i>T3</i>	Golding E W and Widdis F C Electrical Measurements and Measuring systems, Wheeler &co 1993
<i>T4</i>	R. S Handpick, Printed Circuit Boards, McGraw Hill Professional, 2005
<i>T5</i>	E. Balaguruswamy, Reliability engineering, Mc Graw Hill-2017
<i>T6</i>	Dale Besterfield et al, Total Quality Management, Pearson 5e 2017
<i>R1</i>	Warenboxleitner, Electrostatic Discharge and Electronic Equipment, IEEE Press 1999
<i>R2</i>	Kim R Fowler, Electronic Instrument Design, Oxford reprint 2015
<i>R3</i>	Kalsi HS, Electronic Instrumentation and Measurements, Mc Graw hill, 4 ed 2019.
<i>R4</i>	A K Swahny, A Course in Electronic Measurements and Instrumentation , 2015, Dhanpath Rai & Co

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
-	NIL		

COURSE OBJECTIVES:

1 This courseaims to lay the foundational aspects of signals and systems in both continuous time and discrete time, in preparation for more advanced subjects in digital signal processing, image processing, communication theory and control systems.

COURSE OUTCOMES:

<i>SL. NO.</i>	DESCRIPTION	Blooms'
		Taxonomy

		Level
С0.1	Graduate will able to identify different standards employed in the	Understand
	manufacture of devices and instruments.	and Apply
		(level2, 3)
С0.2	Graduate can utilize the selection criteria employed in the selection of	Understand
	transducers and instruments in instrumentation.	and Apply
		(level2, 3)
С0.3	Graduate can summarize the calibration employed for transducers and	Understand
	instruments.	and Apply
		(level2, 3)
<i>C0.4</i>	Graduate can apply the principles governing installation of control panels and	Understand
	their operation	and Apply
		(level2, 3)
С0.5	Graduate will explain the concept of various control scheme used in feedback	Understand
	systems and the principles of reliability, failure analysis and quality control	and Apply
		(level2, 3)

CO-PO AND CO-PSO MAPPING

	PO	PSO	PSO	PSO											
'	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	-	-	-	-	-	-	-	-	-	-	-	3	-	-
<i>CO2</i>	3	3	3	-	-	-	-	-	-	-	-	-	-	-	2
СО3	3	3	2	-	-	-	-	-	-	-	-	-	-	2	-
<i>CO4</i>	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
<i>C05</i>	3	3	3	-	-	-	-	-	-	-	-	-	-	3	-

JUSTIFATIONS FOR CO-PO MAPPING

MAPPING	LOW/MEDIUM/	JUSTIFICATION
	HIGH	
С01-Р01	Н	Apply the knowledge of mathematics, science and engineering
		fundamentals to understand the concepts instrumentation
		system.
CO1– PSO1	Н	Different standards are used for the design and implement
		various electronics and instrumentation systems.
СО2-РО1	Н	Apply the knowledge of mathematics, science and engineering
		fundamentals for the selection of transducers and instruments in
		instrumentation
СО2-РО2	Н	Analyze the instrumentation system using the principles of
		mathematics.
СО2-РОЗ	Н	Analyzing signals with the help of series and transforms helps

		in design solutions for complex engineering problems
CO2–PSO3	М	New concepts are studied.
СО3-РО1	Н	Apply the knowledge of mathematics, science and engineering
		fundamentals to describe orthogonality of signals and
		convolution integral.
СО3-РО2	Н	Concept of orthogonality and convolution integral requires the
		first principles of mathematics.
СО3-РОЗ	Н	Analyzingorthogonality of signals & convolution integral helps
		in design solutions for complex engineering problems.
CO3–PSO2	М	Knowledge about the orthogonality of signals and convolution
		integral helps in the development of instrumentation systems.
CO4-PO1	Н	Apply the knowledge of mathematics and engineering
		fundamentals to compute the LTI response of a system to input
		signals
<i>CO4-PO2</i>	Н	Analysis and characterization of LTI systems using Laplace
		and Z-Transform
СО5-РО1	Н	Apply the knowledge of mathematics and engineering
		fundamentals to understand the importance of sampling
		theorem to discretize continuous time signals.
СО5-РО2	Н	Understand the Nyquist criteria and evaluate different sampling
		criteria using the first principles of mathematics and
		engineering sciences.
СО5-РОЗ	Н	The analysis of sampling theorem provides design solutions for
		different signal processing algorithms.
<i>CO5–PSO2</i>	Н	Apply sampling theorem to discretize continuous time signals
		for developing instrumentation systems.

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

SL	DESCRIPTION	PROPOSED	RELEVANCE	RELEVANCE
NO		ACTIONS	WITH POs	WITH PSOs
	Nil			

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

SL NO	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POs	RELEVANCE WITH PSOs
	NIL			

WEB SOURCE REFERENCES:

2 www.nptel.iitm.ac.in/courses/117104074/

1

- 3 www.ece.gatech.edu/users/bonnie/book/worked_problems.html
- *4* www.ece.jhu.edu/~cooper/courses/214/signalsandsystemsnotes.pdf
- 5 *link.springer.com/journal/498*

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

🗆 CHALK & TALK	ØSTUD.	Ø WEB	ONLINE
	ASSIGNMENTS	RESOURCES	CLASSES
ZLCD/SMART	⊠STUD.	□ ADD-ON	
BOARDS	SEMINARS	COURSES	

ASSESSMENT METHODOLOGIES-DIRECT

Z ASSIGNMENTS	ØSTUD.	TESTS/MODEL	ØUNIV.
' 	SEMINARS	EXAMS	EXAMINATION
□STUD. LAB	□STUD. VIVA	□ MINI/MAJOR	
PRACTICES		PROJECTS	CERTIFICATIONS
□ ADD-ON	□ OTHERS		
COURSES			

ASSESSMENT METHODOLOGIES-INDIRECT

ASSESSMENT OF COURSE OUTCOMES	STUDENT FEEDBACK ON
(BY FEEDBACK, ONCE)	FACULTY (TWICE)
ASSESSMENT OF MINI/MAJOR	□ OTHERS
PROJECTS BY EXT. EXPERTS	

Prepared by

Approved by

MS. Mary Hexy

Dr. Hari C.V. (HOD, DAEI)

(Faculty in Charge)

Course Plan

	Modul	
Sl.No	e	Planned
1	1	Concepts of instrument design
2	1	Concepts of instrument design
3	1	Concepts of instrument design
4	1	Functional requirements and specifications
5	1	Functional requirements and specifications
6	1	Standards – military, industrial, and commercial standards
7	1	Standards – military, industrial, and commercial standards
8	1	BIS standards, ANSI standards, NEMA standards, DIN standards.
		Instruments symbols and signals
9	1	BIS standards, ANSI standards, NEMA standards, DIN standards.
		Instruments symbols and signals
10	1	BIS standards, ANSI standards, NEMA standards, DIN standards.
		Instruments symbols and signals
11	1	BIS standards, ANSI standards, NEMA standards, DIN standards.
		Instruments symbols and signals
12	2	Performance characteristics and selection criteria: Performance
		characteristics and selection criteria for flow,
13	2	Pressure and level transducers.
14	2	Smart transmitters
15	2	Range specifications and standards
16	2	Interfacing of sensors and end devices.
17	2	Display devices and plotting devices.
18	3	Calibration and testing standards: Calibration and testing standards for
		instruments transducers and display devices.
19	3	Measurement and performance tests – impedance, resolution, noise,
		threshold and life tests.
20	3	Measurements of voltage current, phase and frequency.
21	3	Design of instrumentation amplifier
22	3	Isolation amplifier
23	3	Active filter
24	3	Guidelines for the design of electronic circuits.
25	4	Control panel design: Operating console and control room panel design
26	4	Control of room environment for electronic equipment
27	4	Heat dissipation forced air circulation and humidity considerations
28	4	Grounding and shielding
29	4	Protection against electrostatic discharge
30	4	Electromagnetic interference and compatibility
31	4	Design guidelines for PCB s: layout schemes.
32	4	PCB sizes design rules digital, analog, single and multilayer PCB s.
		Automated PCB design, CAD packages and tools.
33	4	PCB sizes design rules digital, analog, single and multilaver PCB s.
		Automated PCB design, CAD packages and tools.
34	5	Principles and design of controllers : Proportional
35	5	Principles and design of controllers : Proportional

36	5	Proportional Integral, Proportional Integral
37	5	Proportional Integral , Proportional Integral
38	5	Derivative controllers and their characteristics.
39	5	Relative merits and demerits. Microprocessor based
40	5	control. Control valves – applications , design and control .
41	5	Reliability: principles
42	5	MTTR, MTBF
43	5	Failure rate analysis
44	5	Product quality variance report.
45	5	Control charts, SQC,
46	5	TQM Principles.
47	5	ISO series,
48	5	Quality standards procedure,
49	5	certification, Quality audit.

Assignment

Design guidelines for PCB s: layout schemes, PCB sizes design rules

Digital, analog, single and multilayer PCB s. automated PCB design, CAD packages and tools.